Magnon-photon strong coupling for tunable microwave circulators

  1. Na Zhu,
  2. Xu Han,
  3. Chang-Ling Zou,
  4. Mingrui Xu,
  5. and Hong X. Tang
We present a generic theoretical framework to describe non-reciprocal microwave circulation in a multimode cavity magnonic system and assess the optimal performance of practical circulatordevices. We show that high isolation (> 56 dB), extremely low insertion loss (< 0.05 dB), and flexible bandwidth control can be potentially realized in high-quality-factor superconducting cavity based magnonic platforms. These circulation characteristics are analyzed with materials of different spin densities. For high-spin-density materials such as yttrium iron garnet, strong coupling operation regime can be harnessed to obtain a broader circulation bandwidth. We also provide practical design principles for a highly integratible low-spin-density material (vanadium tetracyanoethylene) for narrow-band circulator operation, which could benefit noise-sensitive quantum microwave measurements. This theory can be extended to other coupled systems and provide design guidelines for achieving tunable microwave non-reciprocity for both classical and quantum applications.[/expand]

Magnon dark modes and gradient memory

  1. Xufeng Zhang,
  2. Chang-Ling Zou,
  3. Na Zhu,
  4. Florian Marquardt,
  5. Liang Jiang,
  6. and Hong X. Tang
Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin
degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up very recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultra-strong coupling, have been demonstrated. One distinct advantage of these systems is that the spins are in the form of well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long life-time. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.