Radiatively-cooled quantum microwave amplifiers

  1. Mingrui Xu,
  2. Yufeng Wu,
  3. Wei Dai,
  4. and Hong X. Tang
Superconducting microwave amplifiers are essential for sensitive signal readout in superconducting quantum processors. Typically based on Josephson Junctions, these amplifiers require
operation at milli-Kelvin temperatures to achieve quantum-limited performance. Here we demonstrate a quantum microwave amplifier that employs radiative cooling to operate at elevated temperatures. This kinetic-inductance-based parametric amplifier, patterned from a single layer of high-Tc NbN thin film\cmt{in the form of a nanobridge}, maintains a high gain and meanwhile enables low added noise of 1.3 quanta when operated at 1.5 Kelvin. Remarkably, this represents only a 0.2 quanta increase compared to the performance at a base temperature of 0.1 Kelvin. By uplifting the parametric amplifiers from the mixing chamber without compromising readout efficiency, this work represents an important step for realizing scalable microwave quantum technologies.

Architectures for Multinode Superconducting Quantum Computers

  1. James Ang,
  2. Gabriella Carini,
  3. Yanzhu Chen,
  4. Isaac Chuang,
  5. Michael Austin DeMarco,
  6. Sophia E. Economou,
  7. Alec Eickbusch,
  8. Andrei Faraon,
  9. Kai-Mei Fu,
  10. Steven M. Girvin,
  11. Michael Hatridge,
  12. Andrew Houck,
  13. Paul Hilaire,
  14. Kevin Krsulich,
  15. Ang Li,
  16. Chenxu Liu,
  17. Yuan Liu,
  18. Margaret Martonosi,
  19. David C. McKay,
  20. James Misewich,
  21. Mark Ritter,
  22. Robert J. Schoelkopf,
  23. Samuel A. Stein,
  24. Sara Sussman,
  25. Hong X. Tang,
  26. Wei Tang,
  27. Teague Tomesh,
  28. Norm M. Tubman,
  29. Chen Wang,
  30. Nathan Wiebe,
  31. Yong-Xin Yao,
  32. Dillon C. Yost,
  33. and Yiyu Zhou
Many proposals to scale quantum technology rely on modular or distributed designs where individual quantum processors, called nodes, are linked together to form one large multinode
quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, a limiting factor of these machines will be internode gates, which may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require a range of techniques, including improvements in entanglement generation, the use of entanglement distillation, and optimized software and compilers, and it remains unclear how improvements to these components interact to affect overall system performance, what performance from each is required, or even how to quantify the performance of each. In this paper, we employ a `co-design‘ inspired approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. In the case of superconducting MNQCs with microwave-to-optical links, we uncover a tradeoff between entanglement generation and distillation that threatens to degrade performance. We show how to navigate this tradeoff, lay out how compilers should optimize between local and internode gates, and discuss when noisy quantum links have an advantage over purely classical links. Using these results, we introduce a roadmap for the realization of early MNQCs which illustrates potential improvements to the hardware and software of MNQCs and outlines criteria for evaluating the landscape, from progress in entanglement generation and quantum memory to dedicated algorithms such as distributed quantum phase estimation. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.

Magnetic field-resilient quantum-limited parametric amplifier

  1. Mingrui Xu,
  2. Risheng Cheng,
  3. Yufeng Wu,
  4. Gangqiang Liu,
  5. and Hong X. Tang
Superconducting parametric amplifiers are crucial components in microwave quantum circuits for enabling quantum-limited signal readout. The best-performing such amplifiers are often
based on Josephson junctions, which however are sensitive to magnetic fields. Therefore, they require magnetic shields and are not easily integratable with other quantum systems that operates within magnetic fields, such as spin ensemble quantum memories. To tackle this challenge, we have developed a kinetic inductance-based parametric amplifier featuring a NbN nanobridge instead of Josephson Junctions, which provides the desired nonlinearity for a strong parametric gain up to 42 dB. The added noise of this nanobridge kinetic-inductance parametric amplifier (hereby referred as NKPA) is calibrated and found to be 0.59±0.03 quanta for phase-preserving amplification, approaching the quantum limit of 0.5 quanta. Most importantly, we show that such excellent noise performance is preserved in an in-plane magnetic field up to 427 mT, the maximum field available in our experiment. This magnetic field-resilient parametric amplifier presents an opportunity towards addressing single electron-spin resonance and more efficient search for Axions as well as Majorana Fermions.

10-GHz superconducting cavity piezo-optomechanics for microwave-optical photon conversion

  1. Xu Han,
  2. Wei Fu,
  3. Changchun Zhong,
  4. Chang-Ling Zou,
  5. Yuntao Xu,
  6. Ayed Al Sayem,
  7. Mingrui Xu,
  8. Sihao Wang,
  9. Risheng Cheng,
  10. Liang Jiang,
  11. and Hong X. Tang
Coherent photon conversion between microwave and optics holds promise for the realization of distributed quantum networks, in particular, the architecture that incorporates superconducting
quantum processors with optical telecommunication channels. High-frequency gigahertz piezo-mechanics featuring low thermal excitations offers an ideal platform to mediate microwave-optical coupling. However, integrating nanophotonic and superconducting circuits at cryogenic temperatures to simultaneously achieve strong photon-phonon interactions remains a tremendous challenge. Here, we report the first demonstration of an integrated superconducting cavity piezo-optomechanical converter where 10-GHz phonons are resonantly coupled with photons in a superconducting microwave and a nanophotonic cavities at the same time. Benefited from the cavity-enhanced interactions, efficient bidirectional microwave-optical photon conversion is realized with an on-chip efficiency of 0.07% and an internal efficiency of 5.8%. The demonstrated superconducting piezo-optomechanical interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in hybrid quantum systems such as microwave-optical photon entanglement and quantum sensing.

Magnon-photon strong coupling for tunable microwave circulators

  1. Na Zhu,
  2. Xu Han,
  3. Chang-Ling Zou,
  4. Mingrui Xu,
  5. and Hong X. Tang
We present a generic theoretical framework to describe non-reciprocal microwave circulation in a multimode cavity magnonic system and assess the optimal performance of practical circulatordevices. We show that high isolation (> 56 dB), extremely low insertion loss (< 0.05 dB), and flexible bandwidth control can be potentially realized in high-quality-factor superconducting cavity based magnonic platforms. These circulation characteristics are analyzed with materials of different spin densities. For high-spin-density materials such as yttrium iron garnet, strong coupling operation regime can be harnessed to obtain a broader circulation bandwidth. We also provide practical design principles for a highly integratible low-spin-density material (vanadium tetracyanoethylene) for narrow-band circulator operation, which could benefit noise-sensitive quantum microwave measurements. This theory can be extended to other coupled systems and provide design guidelines for achieving tunable microwave non-reciprocity for both classical and quantum applications.[/expand]

Radiative cooling of a superconducting resonator

  1. Mingrui Xu,
  2. Xu Han,
  3. Chang-Ling Zou,
  4. Wei Fu,
  5. Yuntao Xu,
  6. Changchun Zhong,
  7. Liang Jiang,
  8. and Hong X. Tang
Cooling microwave resonators to near the quantum ground state, crucial for their operation in the quantum regime, is typically achieved by direct device refrigeration to a few tens
of millikelvin. However, in quantum experiments that require high operation power such as microwave-to-optics quantum transduction, it is desirable to operate at higher temperatures with non-negligible environmental thermal excitations, where larger cooling power is available. In this Letter, we present a radiative cooling protocol to prepare a superconducting microwave mode near its quantum ground state in spite of warm environment temperatures for the resonator. In this proof-of-concept experiment, the mode occupancy of a 10-GHz superconducting resonator thermally anchored at 1.02~K is reduced to 0.44±0.05 by radiatively coupling to a 70-mK cold load. This radiative cooling scheme allows high-operation-power microwave experiments to work in the quantum regime, and opens possibilities for routing microwave quantum states to elevated temperatures.

Quantum Microwave Radiometry with a Superconducting Qubit

  1. Zhixin Wang,
  2. Mingrui Xu,
  3. Xu Han,
  4. Wei Fu,
  5. Shruti Puri,
  6. S. M. Girvin,
  7. Hong X. Tang,
  8. S. Shankar,
  9. and M. H. Devoret
The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on the
photon-induced-dephasing process of a superconducting qubit for sensing microwave radiation at the sub-unit-photon level. Using this radiometer, we demonstrated the radiative cooling of a 1-K microwave resonator and measured its mode temperature with an uncertainty ~0.01 K. We have thus developed a precise tool for studying the thermodynamics of quantum microwave circuits, which provides new solutions for calibrating hybrid quantum systems and detecting candidate particles for dark matter.

Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits

  1. Linran Fan,
  2. Chang-Ling Zou,
  3. Risheng Cheng,
  4. Xiang Guo,
  5. Xu Han,
  6. Zheng Gong,
  7. Sihao Wang,
  8. and Hong X. Tang
Leveraging the quantum information processing ability of superconducting circuits and long-distance distribution ability of optical photons promises the realization of complex and large-scale
quantum networks. In such a scheme, a coherent and efficient quantum transducer between superconducting and photonic circuits is critical. However, such quantum transducer is still challenging since the use of intermediate excitations in current schemes introduces extra noise and limits bandwidth. Here we realize direct and coherent transduction between superconducting and photonic circuits based on triple-resonance electro-optics principle, with integrated devices incorporating both superconducting and optical cavities on the same chip. Electromagnetically induced transparency is observed, indicating the coherent interaction between microwave and optical photons. Internal conversion efficiency of 25.9\pm0.3\% has been achieved, with 2.05\pm0.04\% total efficiency. Superconducting cavity electro-optics offers broad transduction bandwidth and high scalability, and represents a significant step towards the integrated hybrid quantum circuits and distributed quantum computation.

Magnon dark modes and gradient memory

  1. Xufeng Zhang,
  2. Chang-Ling Zou,
  3. Na Zhu,
  4. Florian Marquardt,
  5. Liang Jiang,
  6. and Hong X. Tang
Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin
degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up very recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultra-strong coupling, have been demonstrated. One distinct advantage of these systems is that the spins are in the form of well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long life-time. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.