Radiative cooling of a superconducting resonator

  1. Mingrui Xu,
  2. Xu Han,
  3. Chang-Ling Zou,
  4. Wei Fu,
  5. Yuntao Xu,
  6. Changchun Zhong,
  7. Liang Jiang,
  8. and Hong X. Tang
Cooling microwave resonators to near the quantum ground state, crucial for their operation in the quantum regime, is typically achieved by direct device refrigeration to a few tens of millikelvin. However, in quantum experiments that require high operation power such as microwave-to-optics quantum transduction, it is desirable to operate at higher temperatures with non-negligible environmental thermal excitations, where larger cooling power is available. In this Letter, we present a radiative cooling protocol to prepare a superconducting microwave mode near its quantum ground state in spite of warm environment temperatures for the resonator. In this proof-of-concept experiment, the mode occupancy of a 10-GHz superconducting resonator thermally anchored at 1.02~K is reduced to 0.44±0.05 by radiatively coupling to a 70-mK cold load. This radiative cooling scheme allows high-operation-power microwave experiments to work in the quantum regime, and opens possibilities for routing microwave quantum states to elevated temperatures.

leave comment