Superconducting cavities with high quality factors, coupled to a fixed-frequency transmon, provide a state-of-the-art platform for quantum information storage and manipulation. Thecommonly used selective number-dependent arbitrary phase (SNAP) gate faces significant challenges in ultra-high-coherence cavities, where the weak dispersive shifts necessary for preserving high coherence typically result in prolonged gate times. Here, we propose a protocol to achieve high-fidelity SNAP gates that are orders of magnitude faster than the standard implementation, surpassing the speed limit set by the bare dispersive shift. We achieve this enhancement by dynamically amplifying the dispersive coupling via sideband interactions, followed by quantum optimal control on the Floquet-engineered system. We also present a unified perturbation theory that explains both the gate acceleration and the associated benign drive-induced decoherence, corroborated by Floquet-Markov simulations. These results pave the way for the experimental realization of high-fidelity, selective control of weakly coupled, high-coherence cavities, and expanding the scope of optimal control techniques to a broader class of Floquet quantum systems.
Superconducting radio-frequency (SRF) cavities offer a promising platform for quantum computing due to their long coherence times and large accessible Hilbert spaces, yet integratingnonlinear elements like transmons for control often introduces additional loss. We report a multimode quantum system based on a 2-cell elliptical shaped SRF cavity, comprising two cavity modes weakly coupled to an ancillary transmon circuit, designed to preserve coherence while enabling efficient control of the cavity modes. We mitigate the detrimental effects of the transmon decoherence through careful design optimization that reduces transmon-cavity couplings and participation in the dielectric substrate and lossy interfaces, to achieve single-photon lifetimes of 20.6 ms and 15.6 ms for the two modes, and a pure dephasing time exceeding 40 ms. This marks an order-of-magnitude improvement over prior 3D multimode memories. Leveraging sideband interactions and novel error-resilient protocols, including measurement-based correction and post-selection, we achieve high-fidelity control over quantum states. This enables the preparation of Fock states up to N=20 with fidelities exceeding 95%, the highest reported to date to the authors‘ knowledge, as well as two-mode entanglement with coherence-limited fidelities reaching up to 99.9% after post-selection. These results establish our platform as a robust foundation for quantum information processing, allowing for future extensions to high-dimensional qudit encodings.
The coherence of superconducting transmon qubits is often disrupted by fluctuations in the energy relaxation time (T1), limiting their performance for quantum computing. While backgroundmagnetic fields can be harmful to superconducting devices, we demonstrate that both trapped magnetic flux and externally applied static magnetic fields can suppress temporal fluctuations in T1 without significantly degrading its average value or qubit frequency. Using a three-axis Helmholtz coil system, we applied calibrated magnetic fields perpendicular to the qubit plane during cooldown and operation. Remarkably, transmon qubits based on tantalum-capped niobium (Nb/Ta) capacitive pads and aluminum-based Josephson junctions (JJs) maintained T1 lifetimes near 300 {\mu}s even when cooled in fields as high as 600 mG. Both trapped flux up to 600 mG and applied fields up to 400 mG reduced T1 fluctuations by more than a factor of two, while higher field strengths caused rapid coherence degradation. We attribute this stabilization to the polarization of paramagnetic impurities, the role of trapped flux as a sink for non-equilibrium quasiparticles (QPs), and partial saturation of fluctuating two-level systems (TLSs). These findings challenge the conventional view that magnetic fields are inherently detrimental and introduce a strategy for mitigating noise in superconducting qubits, offering a practical path toward more stable and scalable quantum systems.
The Superconducting Materials and Systems (SQMS) Center, a DOE National Quantum Information Science Research Center, has conducted a comprehensive and coordinated study using superconductingtransmon qubit chips with known performance metrics to identify the underlying materials-level sources of device-to-device performance variation. Following qubit coherence measurements, these qubits of varying base superconducting metals and substrates have been examined with various nondestructive and invasive material characterization techniques at Northwestern University, Ames National Laboratory, and Fermilab as part of a blind study. We find trends in variations of the depth of the etched substrate trench, the thickness of the surface oxide, and the geometry of the sidewall, which when combined, lead to correlations with the T1 lifetime across different devices. In addition, we provide a list of features that varied from device to device, for which the impact on performance requires further studies. Finally, we identify two low-temperature characterization techniques that may potentially serve as proxy tools for qubit measurements. These insights provide materials-oriented solutions to not only reduce performance variations across neighboring devices, but also to engineer and fabricate devices with optimal geometries to achieve performance metrics beyond the state-of-the-art values.
Temporal fluctuations in the superconducting qubit lifetime, T1, bring up additional challenges in building a fault-tolerant quantum computer. While the exact mechanisms remain unclear,T1 fluctuations are generally attributed to the strong coupling between the qubit and a few near-resonant two-level systems (TLSs) that can exchange energy with an assemble of thermally fluctuating two-level fluctuators (TLFs) at low frequencies. Here, we report T1 measurements on the qubits with different geometrical footprints and surface dielectrics as a function of the temperature. By analyzing the noise spectrum of the qubit depolarization rate, Γ1=1/T1, we can disentangle the impact of TLSs, non-equilibrium quasiparticles (QPs), and equilibrium (thermally excited) QPs on the variance in Γ1. We find that Γ1 variances in the qubit with a small footprint are more susceptible to the QP and TLS fluctuations than those in the large-footprint qubits. Furthermore, the QP-induced variances in all qubits are consistent with the theoretical framework of QP diffusion and fluctuation. We suggest these findings can offer valuable insights for future qubit design and engineering optimization.
The performance of superconducting qubits is often limited by dissipation and two-level systems (TLS) losses. The dominant sources of these losses are believed to originate from amorphousmaterials and defects at interfaces and surfaces, likely as a result of fabrication processes or ambient exposure. Here, we explore a novel wet chemical surface treatment at the Josephson junction-substrate and the substrate-air interfaces by replacing a buffered oxide etch (BOE) cleaning process with one that uses hydrofluoric acid followed by aqueous ammonium fluoride. We show that the ammonium fluoride etch process results in a statistically significant improvement in median T1 by ∼22% (p=0.002), and a reduction in the number of strongly-coupled TLS in the tunable frequency range. Microwave resonator measurements on samples treated with the ammonium fluoride etch prior to niobium deposition also show ∼33% lower TLS-induced loss tangent compared to the BOE treated samples. As the chemical treatment primarily modifies the Josephson junction-substrate interface and substrate-air interface, we perform targeted chemical and structural characterizations to examine materials‘ differences at these interfaces and identify multiple microscopic changes that could contribute to decreased TLS.
Superconducting qubits can be sensitive to abrupt energy deposits caused by cosmic rays and ambient radioactivity. Previous studies have focused on understanding possible correlatedeffects over time and distance due to cosmic rays. In this study, for the first time, we directly compare the response of a transmon qubit measured initially at the Fermilab SQMS above-ground facilities and then at the deep underground Gran Sasso Laboratory (INFN-LNGS, Italy). We observe same average qubit lifetime T1 of roughly 80 microseconds at above and underground facilities. We then apply a fast decay detection protocol and investigate the time structure, sensitivity and relative rates of triggered events due to radiation versus intrinsic noise, comparing above and underground performance of several high-coherence qubits. Using gamma sources of variable activity we calibrate the response of the qubit to different levels of radiation in an environment with minimal background radiation. Results indicate that qubits respond to a strong gamma source and it is possible to detect particle impacts. However, when comparing above and underground results, we do not observe a difference in radiation induced-like events for these sapphire and niobium-based transmon qubits. We conclude that the majority of these events are not radiation related and to be attributed to other noise sources which by far dominate single qubit errors in modern transmon qubits.
Engineering high-fidelity two-qubit gates is an indispensable step toward practical quantum computing. For superconducting quantum platforms, one important setback is the stray interactionbetween qubits, which causes significant coherent errors. For transmon qubits, protocols for mitigating such errors usually involve fine-tuning the hardware parameters or introducing usually noisy flux-tunable couplers. In this work, we propose a simple scheme to cancel these stray interactions. The coupler used for such cancellation is a driven high-coherence resonator, where the amplitude and frequency of the drive serve as control knobs. Through the resonator-induced-phase (RIP) interaction, the static ZZ coupling can be entirely neutralized. We numerically show that such a scheme can enable short and high-fidelity entangling gates, including cross-resonance CNOT gates within 40 ns and adiabatic CZ gates within 140 ns. Our architecture is not only ZZ free but also contains no extra noisy components, such that it preserves the coherence times of fixed-frequency transmon qubits. With the state-of-the-art coherence times, the error of our cross-resonance CNOT gate can be reduced to below 1e-4.
We present a novel transmon qubit fabrication technique that yields systematic improvements in T1 coherence times. We fabricate devices using an encapsulation strategy that involvespassivating the surface of niobium and thereby preventing the formation of its lossy surface oxide. By maintaining the same superconducting metal and only varying the surface structure, this comparative investigation examining different capping materials and film substrates across different qubit foundries definitively demonstrates the detrimental impact that niobium oxides have on the coherence times of superconducting qubits, compared to native oxides of tantalum, aluminum or titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T1 coherence times 2 to 5 times longer than baseline niobium qubit devices with native niobium oxides. When capping niobium with tantalum, we obtain median qubit lifetimes above 200 microseconds. Our comparative structural and chemical analysis suggests that amorphous niobium suboxides may induce higher losses. These results are in line with high-accuracy measurements of the niobium oxide loss tangent obtained with ultra-high Q superconducting radiofrequency (SRF) cavities. This new surface encapsulation strategy enables further reduction of dielectric losses via passivation with ambient-stable materials, while preserving fabrication and scalable manufacturability thanks to the compatibility with silicon processes.
The coherence times of many widely used superconducting qubits are limited by material defects that can be modeled as an ensemble of two-level systems (TLSs). Among them, charge fluctuatorsinside amorphous oxide layers are believed to contribute to both low-frequency 1/f charge noise and high-frequency dielectric loss, causing fast qubit dephasing and relaxation. Here, we propose to mitigate those noise channels by engineering the relevant TLS noise spectral densities. Specifically, our protocols smooth the high-frequency noise spectrum and suppress the low-frequency noise amplitude via relaxing and dephasing the TLSs, respectively. As a result, we predict a drastic stabilization in qubit lifetime and an increase in qubit pure dephasing time. Our detailed analysis of feasible experimental implementations shows that the improvement is not compromised by spurious coupling from the applied noise to the qubit.