I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
13
Jul
2023
Autoparametric resonance extending the bit-flip time of a cat qubit up to 0.3 s
Cat qubits, for which logical |0⟩ and |1⟩ are coherent states |±α⟩ of a harmonic mode, offer a promising route towards quantum error correction. Using dissipation to our advantage
so that photon pairs of the harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical states and exponentially increase the bit-flip time of the cat qubit with the photon number |α|2. Large two-photon dissipation rate κ2 ensures fast qubit manipulation and short error correction cycles, which are instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here we introduce and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a parametric pump and reaches a rate κ2/2π≈2 MHz. With such a strong two-photon dissipation, bit-flip errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild impact on phase-flip errors. Besides, we illustrate how the phase of a quantum superposition between |α⟩ and |−α⟩ can be arbitrarily changed by driving the harmonic mode while keeping the engineered dissipation active.
10
Jul
2023
Detection of temporal fluctuation in superconducting qubits for quantum error mitigation
We have investigated instability of a superconducting quantum computer by continuously monitoring the qubit output. We found that qubits exhibit a step-like change in the error rates.
This change is repeatedly observed, and each step persists for several minutes. By analyzing the correlation between the increased errors and anomalous variance of the output, we demonstrate quantum error mitigation based on post-selection. Numerical analysis on the proposed method was also conducted.
08
Jul
2023
Coupling high-overtone bulk acoustic wave resonators via superconducting qubits
In this work, we present a device consisting of two coupled transmon qubits, each of which are coupled to an independent high-overtone bulk acoustic wave resonator (HBAR). Both HBAR
resonators support a plethora of acoustic modes, which can couple to the qubit near resonantly. We first show qubit-qubit interaction in the multimode system, and finally quantum state transfer where an excitation is swapped from an HBAR mode of one qubit, to an HBAR mode of the other qubit.
06
Jul
2023
Demonstrating a superconducting dual-rail cavity qubit with erasure-detected logical measurements
A critical challenge in developing scalable error-corrected quantum systems is the accumulation of errors while performing operations and measurements. One promising approach is to
design a system where errors can be detected and converted into erasures. A recent proposal aims to do this using a dual-rail encoding with superconducting cavities. In this work, we implement such a dual-rail cavity qubit and use it to demonstrate a projective logical measurement with erasure detection. We measure logical state preparation and measurement errors at the 0.01%-level and detect over 99% of cavity decay events as erasures. We use the precision of this new measurement protocol to distinguish different types of errors in this system, finding that while decay errors occur with probability ∼0.2% per microsecond, phase errors occur 6 times less frequently and bit flips occur at least 170 times less frequently. These findings represent the first confirmation of the expected error hierarchy necessary to concatenate dual-rail erasure qubits into a highly efficient erasure code.
05
Jul
2023
High-Energy Collision of Quarks and Hadrons in the Schwinger Model: From Tensor Networks to Circuit QED
With the aim of studying nonperturbative out-of-equilibrium dynamics of high-energy particle collisions on quantum simulators, we investigate the scattering dynamics of lattice quantum
electrodynamics in 1+1 dimensions. Working in the bosonized formulation of the model, we propose an analog circuit-QED implementation that is native to the platform, requires minimal ingredients and approximations, and enables practical schemes for particle wave-packet preparation and evolution. Furthermore, working in the thermodynamic limit, we use uniform-matrix-product-state tensor networks to construct multi-particle wave-packet states, evolve them in time, and detect outgoing particles post collision. This facilitates the numerical simulation of scattering experiments in both confined and deconfined regimes of the model at different energies, giving rise to rich phenomenology, including inelastic production of quark and meson states, meson disintegration, and dynamical string formation and breaking. We obtain elastic and inelastic scattering cross sections, together with time-resolved momentum and position distributions of the outgoing particles. This study highlights the role of classical and quantum simulation in enhancing our understanding of scattering processes in quantum field theories in real time.
30
Jun
2023
Improved Parameter Targeting in {3D}-Integrated Superconducting Circuits through a Polymer Spacer Process
Three-dimensional device integration facilitates the construction of superconducting quantum information processors with more than several tens of qubits by distributing elements such
as control wires, qubits, and resonators between multiple layers. The frequencies of resonators and qubits in flip-chip-bonded multi-chip modules depend on the details of their electromagnetic environment defined by the conductors and dielectrics in their vicinity. Accurate frequency targeting therefore requires precise control of the separation between chips and minimization of their relative tilt. Here, we describe a method to control the inter-chip separation by using polymer spacers. Compared to an identical process without spacers, we reduce the measured planarity error by a factor of 3.5, to a mean tilt of 76(35) μrad, and the deviation from the target inter-chip separation by a factor of ten, to a mean of 0.4(8) μm. We apply this process to coplanar waveguide resonator samples and observe chip-to-chip resonator frequency variations below 50 MHz (≈ 1 %). We measure internal quality factors of 5×105 at the single-photon level, suggesting that the added spacers are compatible with low-loss device fabrication.
29
Jun
2023
Tunable coupler to fully decouple superconducting qubits
Enhancing the capabilities of superconducting quantum hardware, requires higher gate fidelities and lower crosstalk, particularly in larger scale devices, in which qubits are coupled
to multiple neighbors. Progress towards both of these objectives would highly benefit from the ability to fully control all interactions between pairs of qubits. Here we propose a new coupler model that allows to fully decouple dispersively detuned Transmon qubits from each other, i.e. ZZ-crosstalk is completely suppressed while maintaining a maximal localization of the qubits‘ computational basis states. We further reason that, for a dispersively detuned Transmon system, this can only be the case if the anharmonicity of the coupler is positive at the idling point. A simulation of a 40ns CZ-gate for a lumped element model suggests that achievable process infidelity can be pushed below the limit imposed by state-of-the-art coherence times of Transmon qubits. On the other hand, idle gates between qubits are no longer limited by parasitic interactions. We show that our scheme can be applied to large integrated qubit grids, where it allows to fully isolate a pair of qubits, that undergoes a gate operation, from the rest of the chip while simultaneously pushing the fidelity of gates to the limit set by the coherence time of the individual qubits.
28
Jun
2023
High-Q trenched aluminum coplanar resonators with an ultrasonic edge microcutting for superconducting quantum devices
Dielectric losses are one of the key factors limiting the coherence of superconducting qubits. The impact of materials and fabrication steps on dielectric losses can be evaluated using
coplanar waveguide (CPW) microwave resonators. Here, we report on superconducting CPW microwave resonators with internal quality factors systematically exceeding 5×106 at high powers and 2×106 (with the best value of 4.4×106) at low power. Such performance is demonstrated for 100-nm-thick aluminum resonators with 7-10.5 um center trace on high-resistivity silicon substrates commonly used in quantum Josephson junction circuits. We investigate internal quality factors of the resonators with both dry and wet aluminum etching, as well as deep and isotropic reactive ion etching of silicon substrate. Josephson junction compatible CPW resonators fabrication process with both airbridges and silicon substrate etching is proposed. Finally, we demonstrate the effect of airbridges positions and extra process steps on the overall dielectric losses. The best quality factors are obtained for the wet etched aluminum resonators and isotropically removed substrate with the proposed ultrasonic metal edge microcutting.
27
Jun
2023
Microwave characterization of tantalum superconducting resonators on silicon substrate with niobium buffer layer
Tantalum thin films sputtered on unheated silicon substrates are characterized with microwaves at around 10 GHz in a 10 mK environment. We show that the phase of tantalum with a body-centered
cubic lattice (α-Ta) can be grown selectively by depositing a niobium buffer layer prior to a tantalum film. The physical properties of the films, such as superconducting transition temperature and crystallinity, change markedly with the addition of the buffer layer. Coplanar waveguide resonators based on the composite film exhibit significantly enhanced internal quality factors compared with a film without the buffer layer. The internal quality factor approaches 2×107 at a large-photon-number limit. While the quality factor decreases at the single-photon level owing to two-level system (TLS) loss, we have identified the primary cause of TLS loss to be the amorphous silicon layer at the film-substrate interface, which originates from the substrate cleaning before the film deposition rather than the film itself. The temperature dependence of the internal quality factors shows a marked rise below 200 mK, suggesting the presence of TLS-TLS interactions. The present low-loss tantalum films can be deposited without substrate heating and thus have various potential applications in superconducting quantum electronics.
26
Jun
2023
Observing Parity Time Symmetry Breaking in a Josephson Parametric Amplifier
A coupled two-mode system with balanced gain and loss is a paradigmatic example of an open quantum system that can exhibit real spectra despite being described by a non-Hermitian Hamiltonian.
We utilize a degenerate parametric amplifier operating in three-wave mixing mode to realize such a system of balanced gain and loss between the two quadrature modes of the amplifier. By examining the time-domain response of the amplifier, we observe a characteristic transition from real-to-imaginary energy eigenvalues associated with the Parity-Time-symmetry-breaking transition.