I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
08
Feb
2023
Gatemon qubit based on a thin InAs-Al hybrid nanowire
We study a gate-tunable superconducting qubit (gatemon) based on a thin InAs-Al hybrid nanowire. Using a gate voltage to control its Josephson energy, the gatemon can reach the strong
coupling regime to a microwave cavity. In the dispersive regime, we extract the energy relaxation time T1∼0.56 μs and the dephasing time T∗2∼0.38 μs. Since thin InAs-Al nanowires can have fewer or single sub-band occupation and recent transport experiment shows the existence of nearly quantized zero-bias conductance peaks, our result holds relevancy for detecting Majorana zero modes in thin InAs-Al nanowires using circuit quantum electrodynamics.
Quantum Computation of Frequency-Domain Molecular Response Properties Using a Three-Qubit iToffoli Gate
The quantum computation of molecular response properties on near-term quantum hardware is a topic of significant interest. While computing time-domain response properties is in principle
straightforward due to the natural ability of quantum computers to simulate unitary time evolution, circuit depth limitations restrict the maximum time that can be simulated and hence the extraction of frequency-domain properties. Computing properties directly in the frequency domain is therefore desirable, but the circuits require large depth when the typical hardware gate set consisting of single- and two-qubit gates is used. Here, we report the experimental quantum computation of the response properties of diatomic molecules directly in the frequency domain using a three-qubit iToffoli gate, enabling a reduction in circuit depth by a factor of two. We show that the molecular properties obtained with the iToffoli gate exhibit comparable or better agreement with theory than those obtained with the native CZ gates. Our work is among the first demonstrations of the practical usage of a native multi-qubit gate in quantum simulation, with diverse potential applications to the simulation of quantum many-body systems on near-term digital quantum computers.
07
Feb
2023
Argon milling induced decoherence mechanisms in superconducting quantum circuits
The fabrication of superconducting circuits requires multiple deposition, etch and cleaning steps, each possibly introducing material property changes and microscopic defects. In this
work, we specifically investigate the process of argon milling, a potentially coherence limiting step, using niobium and aluminum superconducting resonators as a proxy for surface-limited behavior of qubits. We find that niobium microwave resonators exhibit an order of magnitude decrease in quality-factors after surface argon milling, while aluminum resonators are resilient to the same process. Extensive analysis of the niobium surface shows no change in the suboxide composition due to argon milling, while two-tone spectroscopy measurements reveal an increase in two-level system electrical dipole moments, indicating a structurally altered niobium oxide hosting larger two-level system defects. However, a short dry etch can fully recover the argon milling induced losses on niobium, offering a potential route towards state-of-the-art overlap Josephson junction qubits with niobium circuitry.
06
Feb
2023
Low-loss interconnects for modular superconducting quantum processors
Scaling is now a key challenge in superconducting quantum computing. One solution is to build modular systems in which smaller-scale quantum modules are individually constructed and
calibrated, and then assembled into a larger architecture. This, however, requires the development of suitable interconnects. Here, we report low-loss interconnects based on pure aluminium coaxial cables and on-chip impedance transformers featuring quality factors up to 8.1×105, which is comparable to the performance of our transmon qubits fabricated on single-crystal sapphire substrate. We use these interconnects to link five quantum modules with inter-module quantum state transfer and Bell state fidelities up to 99\%. To benchmark the overall performance of the processor, we create maximally-entangled, multi-qubit Greenberger-Horne-Zeilinger (GHZ) states. The generated inter-module four-qubit GHZ state exhibits 92.0\% fidelity. We also entangle up to 12 qubits in a GHZ state with 55.8±1.8% fidelity, which is above the genuine multipartite entanglement threshold of 1/2. These results represent a viable modular approach for large-scale superconducting quantum processors.
01
Feb
2023
Scheme for parity-controlled multi-qubit gates with superconducting qubits
Multi-qubit parity measurements are at the core of many quantum error correction schemes. Extracting multi-qubit parity information typically involves using a sequence of multiple two-qubit
gates. In this paper, we propose a superconducting circuit device with native support for multi-qubit parity-controlled gates (PCG). These are gates that perform rotations on a parity ancilla based on the multi-qubit parity operator of adjacent qubits, and can be directly used to perform multi-qubit parity measurements. The circuit consists of a set of concatenated Josephson ring modulators and effectively realizes a set of transmon-like qubits with strong longitudinal nearest-neighbor couplings. PCGs are implemented by applying microwave drives to the parity ancilla at specific frequencies. We investigate the scheme’s performance with numerical simulation using realistic parameter choices and decoherence rates, and find that the device can perform four-qubit PCGs in 30 ns with process fidelity surpassing 99%. Furthermore, we study the effects of parameter disorder and spurious coupling between next-nearest neighboring qubits. Our results indicate that this approach to realizing PCGs constitute an interesting candidate for near-term quantum error correction experiments.
31
Jan
2023
Exceptional-point-assisted entanglement, squeezing, and reset in a chain of three superconducting resonators
The interplay between coherent and dissipative dynamics required in various control protocols of quantum technology has motivated studies of open-system degeneracies, referred to as
exceptional points (EPs). Here, we introduce a scheme for fast quantum-state synthesis using exceptional-point engineering in a lossy chain of three superconducting resonators. We theoretically find that the rich physics of EPs can be used to identify regions in the parameter space that favor a fast and quasi-stable transfer of squeezing and entanglement, or a fast reset of the system. For weakly interacting resonators with the coupling strength g, the obtained quasi-stabilization time scales are identified as 1/(22‾√g), and reset infidelities below 10−5 are obtained with a waiting time of roughly 6/g in the case of weakly squeezed resonators. Our results shed light on the role of EPs in multimode Gaussian systems and pave the way for optimized distribution of squeezing and entanglement between different nodes of a photonic network using dissipation as a resource.
27
Jan
2023
Machine-guided Design of Oxidation Resistant Superconductors for Quantum Information Applications
Decoherence in superconducting qubits has long been attributed to two level systems arising from the surfaces and interfaces present in real devices. A recent significant step in reducing
decoherence was the replacement of superconducting niobium by superconducting tantalum, resulting in a tripling of transmon qubit lifetimes (T1). One of these surface variables, the identity, thickness, and quality of the native surface oxide, is thought to play a major role as tantalum only has one oxide whereas niobium has several. Here we report the development of a thermodynamic metric to rank materials based on their potential to form a well-defined, thin, surface oxide. We first compute this metric for known binary and ternary metal alloys using data available from Materials Project, and experimentally validate the strengths and limits of this metric through preparation and controlled oxidation of 8 known metal alloys. Then we train a convolutional neural network to predict the value of this metric from atomic composition and atomic properties. This allows us to compute the metric for materials that are not present in materials project, including a large selection of known superconductors, and, when combined with Tc, allow us to identify new candidate superconductors for quantum information science (QISE) applications. We test the oxidation resistance of a pair of these predictions experimentally. Our results are expected to lay the foundation for tailored and rapid selection of improved superconductors for QISE.
24
Jan
2023
Conditional not displacement: fast multi-oscillator control with a single qubit
Bosonic encoding is an approach for quantum information processing, promising lower hardware overhead by encoding in the many levels of a harmonic oscillator. Scaling to multiple modes
requires them to be decoupled for independent control, yet strongly coupled for fast interaction. How to perform fast and efficient universal control on multiple modes remains an open problem. We develop a control method that enables fast multi-mode generation and control of bosonic qubits which are weakly coupled to a single ancilla qubit. The weak coupling allows for excellent independent control, despite the weak ancilla coupling our method allows for fast control. We demonstrate our control by using a superconducting transmon qubit coupled to a multi-mode superconducting cavity. We create both entangled and separate cat-states in different modes of a multi-mode cavity, showing the individual and coupled control of the modes. We show that the operation time is not limited by the inverse of the dispersive coupling rate, which is the typical timescale, and we exceed it in practice by almost 2 orders of magnitude. Our scheme allows for multi-mode bosonic codes as well as more efficient scaling of hardware.
19
Jan
2023
Radiation-induced secondary emissions in solid-state devices as a possible contribution to quasiparticle poisoning of superconducting circuits
This report estimates the potential for secondary emission processes induced by ionizing radiation to result in the generation of quasiparticles in superconducting circuits. These estimates
are based on evaluation of data collected from a small superconducting detector and a fluorescence measurement of typical read-out circuit board materials. Specifically, we study cosmic ray muons interacting with substrate or mechanical support materials present within the vicinity of superconducting circuits. We evaluate the potential for secondary emission, such as scintillation and/or fluorescence, from these nearby materials to occur at sufficient energy (wavelength) and rate (photon flux) to ultimately lead to the breaking of superconducting Copper pairs (i.e., production of quasiparticles). This evaluation leads to a conclusion that material fluorescence in the vicinity of superconducting circuits is a potential contributor to undesirable elevated quasiparticle populations. A co-design approach evaluating superconducting circuit design and the material environment within the immediate vicinity of the circuit would prove beneficial for mitigating undesired environmentally-induced influences on superconducting device performance, such as in direct detection dark matter sensors or quantum computing bits (qubits).
18
Jan
2023
Disentangling Losses in Tantalum Superconducting Circuits
Superconducting qubits are a leading system for realizing large scale quantum processors, but overall gate fidelities suffer from coherence times limited by microwave dielectric loss.
Recently discovered tantalum-based qubits exhibit record lifetimes exceeding 0.3 ms. Here we perform systematic, detailed measurements of superconducting tantalum resonators in order to disentangle sources of loss that limit state-of-the-art tantalum devices. By studying the dependence of loss on temperature, microwave photon number, and device geometry, we quantify materials-related losses and observe that the losses are dominated by several types of saturable two level systems (TLSs), with evidence that both surface and bulk related TLSs contribute to loss. Moreover, we show that surface TLSs can be altered with chemical processing. With four different surface conditions, we quantitatively extract the linear absorption associated with different surface TLS sources. Finally, we quantify the impact of the chemical processing at single photon powers, the relevant conditions for qubit device performance. In this regime we measure resonators with internal quality factors ranging from 5 to 15 x 10^6, comparable to the best qubits reported. In these devices the surface and bulk TLS contributions to loss are comparable, showing that systematic improvements in materials on both fronts will be necessary to improve qubit coherence further.