Multiplexed control scheme for scalable quantum information processing with superconducting qubits

  1. Pan Shi,
  2. Jiahao Yuan,
  3. Fei Yan,
  4. and Haifeng Yu
The advancement of scalable quantum information processing relies on the accurate and parallel manipulation of a vast number of qubits, potentially reaching into the millions. Superconducting
qubits, traditionally controlled through individual circuitry, currently face a formidable scalability challenge due to the excessive use of wires. This challenge is nearing a critical point where it might soon surpass the capacities of on-chip routing, I/O packaging, testing platforms, and economically feasible solutions. Here we introduce a multiplexed control scheme that efficiently utilizes shared control lines for operating multiple qubits and couplers. By integrating quantum hardware-software co-design, our approach utilizes advanced techniques like frequency multiplexing and individual tuning. This enables simultaneous and independent execution of single- and two-qubit gates with significantly simplified wiring. This scheme has the potential to diminish the number of control lines by one to two orders of magnitude in the near future, thereby substantially enhancing the scalability of superconducting quantum processors.

Conditional coherent control with superconducting artificial atoms

  1. Chang-Kang Hu,
  2. Jiahao Yuan,
  3. Bruno A. Veloso,
  4. Jiawei Qiu,
  5. Yuxuan Zhou,
  6. Libo Zhang,
  7. Ji Chu,
  8. Orkesh Nurbolat,
  9. Ling Hu,
  10. Jian Li,
  11. Yuan Xu,
  12. Youpeng Zhong,
  13. Song Liu,
  14. Fei Yan,
  15. Dian Tan,
  16. R. Bachelard,
  17. Alan C. Santos,
  18. C. J. Villas-Boas,
  19. and Dapeng Yu
Controlling the flow of quantum information is a fundamental task for quantum computers, which is unpractical to realize on classical devices. Coherent devices which can process quantum
states are thus required to route the quantum states yielding the information. In this paper we demonstrate experimentally the smallest quantum transistor for superconducting processors, composed of collector and emitter qubits, and the coupler. The interaction strength between the collector and emitter is controlled by tuning the frequency and the state of the gate qubit, effectively implementing a quantum switch. From the truth-table measurement (open-gate fidelity 93.38%, closed-gate fidelity 98.77%), we verify the high performance of the quantum transistor. We also show that taking into account the third energy level of the qubits is critical to achieving a high-fidelity transistor. The presented device has a strong potential for quantum information processes in superconducting platforms.

Optimal charging of a superconducting quantum battery

  1. Chang-Kang Hu,
  2. Jiawei Qiu,
  3. Paulo J. P. Souza,
  4. Jiahao Yuan,
  5. Yuxuan Zhou,
  6. Libo Zhang,
  7. Ji Chu,
  8. Xianchuang Pan,
  9. Ling Hu,
  10. Jian Li,
  11. Yuan Xu,
  12. Youpeng Zhong,
  13. Song Liu,
  14. Fei Yan,
  15. Dian Tan,
  16. R. Bachelard,
  17. C. J. Villas-Boas,
  18. Alan C. Santos,
  19. and Dapeng Yu
Quantum batteries are miniature energy storage devices and play a very important role in quantum thermodynamics. In recent years, quantum batteries have been extensively studied, but
limited in theoretical level. Here we report the experimental realization of a quantum battery based on superconducting qubits. Our model explores dark and bright states to achieve stable and powerful charging processes, respectively. Our scheme makes use of the quantum adiabatic brachistochrone, which allows us to speed up the {battery ergotropy injection. Due to the inherent interaction of the system with its surrounding, the battery exhibits a self-discharge, which is shown to be described by a supercapacitor-like self-discharging mechanism. Our results paves the way for proposals of new superconducting circuits able to store extractable work for further usage.

Suppressing Coherent Two-Qubit Errors via Dynamical Decoupling

  1. Jiawei Qiu,
  2. Yuxuan Zhou,
  3. Chang-Kang Hu,
  4. Jiahao Yuan,
  5. Libo Zhang,
  6. Ji Chu,
  7. Wenhui Huang,
  8. Weiyang Liu,
  9. Kai Luo,
  10. Zhongchu Ni,
  11. Xianchuang Pan,
  12. Zhixuan Yang,
  13. Yimeng Zhang,
  14. Yuanzhen Chen,
  15. Xiu-Hao Deng,
  16. Ling Hu,
  17. Jian Li,
  18. Jingjing Niu,
  19. Yuan Xu,
  20. Tongxing Yan,
  21. Youpeng Zhong,
  22. Song Liu,
  23. Fei Yan,
  24. and Dapeng Yu
Scalable quantum information processing requires the ability to tune multi-qubit interactions. This makes the precise manipulation of quantum states particularly difficult for multi-qubit
interactions because tunability unavoidably introduces sensitivity to fluctuations in the tuned parameters, leading to erroneous multi-qubit gate operations. The performance of quantum algorithms may be severely compromised by coherent multi-qubit errors. It is therefore imperative to understand how these fluctuations affect multi-qubit interactions and, more importantly, to mitigate their influence. In this study, we demonstrate how to implement dynamical-decoupling techniques to suppress the two-qubit analogue of the dephasing on a superconducting quantum device featuring a compact tunable coupler, a trending technology that enables the fast manipulation of qubit–qubit interactions. The pure-dephasing time shows an up to ~14 times enhancement on average when using robust sequences. The results are in good agreement with the noise generated from room-temperature circuits. Our study further reveals the decohering processes associated with tunable couplers and establishes a framework to develop gates and sequences robust against two-qubit errors.

High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits

  1. Yuan Xu,
  2. Ji Chu,
  3. Jiahao Yuan,
  4. Jiawei Qiu,
  5. Yuxuan Zhou,
  6. Libo Zhang,
  7. Xinsheng Tan,
  8. Yang Yu,
  9. Song Liu,
  10. Jian Li,
  11. Fei Yan,
  12. and Dapeng Yu
High-quality two-qubit gate operations are crucial for scalable quantum information processing. Often, the gate fidelity is compromised when the system becomes more integrated. Therefore,
a low-error-rate, easy-to-scale two-qubit gate scheme is highly desirable. Here, we experimentally demonstrate a new two-qubit gate scheme that exploits fixed-frequency qubits and a tunable coupler in a superconducting quantum circuit. The scheme requires less control lines, reduces crosstalk effect, simplifies calibration procedures, yet produces a controlled-Z gate in 30ns with a high fidelity of 99.5%. Error analysis shows that gate errors are mostly coherence-limited. Our demonstration paves the way for large-scale implementation of high-fidelity quantum operations.