Universal readout error mitigation scheme characterized on superconducting qubits

  1. Adrian Skasberg Aasen,
  2. Andras Di Giovanni,
  3. Hannes Rotzinger,
  4. Alexey V. Ustinov,
  5. and Martin Gärttner
Quantum technologies rely heavily on accurate control and reliable readout of quantum systems. Current experiments are limited by numerous sources of noise that can only be partially
captured by simple analytical models and additional characterization of the noise sources is required. We test the ability of readout error mitigation to correct realistic noise found in systems composed of quantum two-level objects (qubits). To probe the limit of such methods, we designed a universal readout error mitigation protocol based on quantum state tomography (QST), which estimates the density matrix of a quantum system, and quantum detector tomography (QDT), which characterizes the measurement procedure. By treating readout error mitigation in the context of state tomography the method becomes largely device-, architecture-, noise source-, and quantum state-independent. We implement this method on a superconducting qubit and benchmark the increase in reconstruction fidelity for QST. We characterize the performance of the method by varying important noise sources, such as suboptimal readout signal amplification, insufficient resonator photon population, off-resonant qubit drive, and effectively shortened T1 and T2 decay times. As a result, we identified noise sources for which readout error mitigation worked well, and observed decreases in readout infidelity by a factor of up to 30.

Random telegraph fluctuations in granular microwave resonators

  1. Maximilian Kristen,
  2. Jan Nicolas Voss,
  3. Micha Wildermuth,
  4. Hannes Rotzinger,
  5. and Alexey V. Ustinov
Microwave circuit electrodynamics of disordered superconductors is a very active research topic spawning a wide range of experiments and applications. For compact superconducting circuit
elements, the transition to an insulating state poses a limit to the maximum attainable kinetic inductance. It is therefore vital to study the fundamental noise properties of thin films close to this transition, particularly in situations where a good coherence and temporal stability is required. In this paper, we present measurements on superconducting granular aluminum microwave resonators with high normal state resistances, where the influence of the superconductor to insulator phase transition is visible. We trace fluctuations of the fundamental resonance frequency and observe, in addition to a 1/f noise pattern, a distinct excess noise, reminiscent of a random telegraph signal. The excess noise shows a strong dependency on the resistivity of the films as well as the sample temperature, but not on the applied microwave power.

Quantum emulation of the transient dynamics in the multistate Landau-Zener model

  1. Alexander Stehli,
  2. Jan David Brehm,
  3. Tim Wolz,
  4. Andre Schneider,
  5. Hannes Rotzinger,
  6. Martin Weides,
  7. and Alexey V. Ustinov
Quantum simulation is one of the most promising near term applications of quantum computing. Especially, systems with a large Hilbert space are hard to solve for classical computers
and thus ideal targets for a simulation with quantum hardware. In this work, we study experimentally the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity. The underlying Hamiltonian is emulated by superconducting quantum circuit, where a tunable transmon qubit is coupled to a bosonic mode ensemble comprising four lumped element microwave resonators. We investigate the model for different initial states: Due to our circuit design, we are not limited to merely exciting the qubit, but can also pump the harmonic modes via a dedicated drive line. Here, the nature of the transient dynamics depends on the average photon number in the excited resonator. The greater effective coupling strength between qubit and higher Fock states results in a quasi-adiabatic transition, where coherent quantum oscillations are suppressed without the introduction of additional loss channels. Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.

Slowing down light in a qubit metamaterial

  1. Jan David Brehm,
  2. Richard Gebauer,
  3. Alexander Stehli,
  4. Alexander N. Poddubny,
  5. Oliver Sander,
  6. Hannes Rotzinger,
  7. and Alexey V. Ustinov
The rapid progress in quantum information processing leads to a rising demand for devices to control the propagation of electromagnetic wave pulses and to ultimately realize a universal
and efficient quantum memory. While in recent years significant progress has been made to realize slow light and quantum memories with atoms at optical frequencies, superconducting circuits in the microwave domain still lack such devices. Here, we demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide, forming a waveguide quantum electrodynamics system. We analyze two complementary approaches, one relying on dressed states of the Autler-Townes splitting, and the other based on a tailored dispersion profile using the qubits tunability. Our time-resolved experiments show reduced group velocities of down to a factor of about 1500 smaller than in vacuum. Depending on the method used, the speed of light can be controlled with an additional microwave tone or an effective qubit detuning. Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures and open the door to microwave dispersion engineering in the quantum regime.

Highly coherent superconducting qubits from a subtractive junction fabrication process

  1. Alexander Stehli,
  2. Jan David Brehm,
  3. Tim Wolz,
  4. Paul Baity,
  5. Sergey Danilin,
  6. Valentino Seferai,
  7. Hannes Rotzinger,
  8. Alexey V. Ustinov,
  9. and Martin Weides
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits. Typically, the junctions for qubits are fabricated using shadow evaporation
techniques to reduce dielectric loss contributions from the superconducting film interfaces. In recent years, however, sub-micron scale overlap junctions have started to attract attention. Compared to shadow mask techniques, neither an angle dependent deposition nor free-standing bridges or overlaps are needed, which are significant limitations for wafer-scale processing. This comes at the cost of breaking the vacuum during fabrication, but simplifies integration in multi-layered circuits, implementation of vastly different junction sizes, and enables fabrication on a larger scale in an industrially-standardized process. In this work, we demonstrate the feasibility of a subtractive process for fabrication of overlap junctions. We evaluate the coherence properties of the junctions by employing them in superconducting transmon qubits. In time domain experiments, we find that both, the qubit life- and coherence time of our best device, are on average greater than 20 μs. Finally, we discuss potential improvements to our technique. This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.

Waveguide Bandgap Engineering with an Array of Superconducting Qubits

  1. Jan David Brehm,
  2. Alexander N. Poddubny,
  3. Alexander Stehli,
  4. Tim Wolz,
  5. Hannes Rotzinger,
  6. and Alexey V. Ustinov
In this work, we experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control coupled to the mode continuum of a superconducting waveguide.
By consecutively tuning the qubits to a common resonance frequency we observe the formation of super- and subradiant states as well as the emergence of a polaritonic bandgap. Making use of the qubits strong intrinsic quantum nonlinearity we study the saturation of the collective modes with increasing photon number and electromagnetically induce a transparency window in the bandgap region of the ensemble, allowing to directly control the band structure of the array. The moderately scaled circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial, thus paving the way for large-scale applications in superconducting waveguide quantum electrodynamics.

Rabi oscillations in a superconducting nanowire circuit

  1. Yannick Schön,
  2. Jan Nicolas Voss,
  3. Micha Wildermuth,
  4. Andre Schneider,
  5. Sebastian T. Skacel,
  6. Martin P. Weides,
  7. Jared H. Cole,
  8. Hannes Rotzinger,
  9. and Alexey V. Ustinov
We investigate the circuit quantum electrodynamics of superconducting nanowire oscillators. The sample circuit consists of a capacitively shunted nanowire with a width of about 20 nm
and a varying length up to 350 nm, capacitively coupled to an on-chip resonator. By applying microwave pulses we observe Rabi oscillations, measure coherence times and the anharmonicity of the circuit. Despite the very compact design, simple top-down fabrication and high degree of disorder in the oxidized (granular) aluminum material used, we observe lifetimes in the microsecond range.

Transmon Qubit in a Magnetic Field: Evolution of Coherence and Transition Frequency

  1. Andre Schneider,
  2. Tim Wolz,
  3. Marco Pfirrmann,
  4. Martin Spiecker,
  5. Hannes Rotzinger,
  6. Alexey V. Ustinov,
  7. and Martin Weides
We report on spectroscopic and time-domain measurements on a fixed-frequency concentric transmon qubit in an applied in-plane magnetic field to explore its limits of magnetic field
compatibility. We demonstrate quantum coherence of the qubit up to field values of B=40mT, even without an optimized chip design or material combination of the qubit. The dephasing rate Γφ is shown to be not affected by the magnetic field in a broad range of the qubit transition frequency. For the evolution of the qubit transition frequency, we find the unintended second junction created in the shadow angle evaporation process to be non-negligible and deduce an analytic formula for the field-dependent qubit energies. We discuss the relevant field-dependent loss channels, which can not be distinguished by our measurements, inviting further theoretical and experimental investigation. Using well-known and well-studied standard components of the superconducting quantum architecture, we are able to reach a field regime relevant for quantum sensing and hybrid applications of magnetic spins and spin systems.

Granular aluminum: A superconducting material for high impedance quantum circuits

  1. Lukas Grünhaupt,
  2. Martin Spiecker,
  3. Daria Gusenkova,
  4. Nataliya Maleeva,
  5. Sebastian T. Skacel,
  6. Ivan Takmakov,
  7. Francesco Valenti,
  8. Patrick Winkel,
  9. Hannes Rotzinger,
  10. Alexey V. Ustinov,
  11. and Ioan M. Pop
Superconducting quantum information processing machines are predominantly based on microwave circuits with relatively low characteristic impedance, of about 100 Ohm, and small anharmonicity,
which can limit their coherence and logic gate fidelity. A promising alternative are circuits based on so-called superinductors, with characteristic impedances exceeding the resistance quantum RQ=6.4 kΩ. However, previous implementations of superinductors, consisting of mesoscopic Josephson junction arrays, can introduce unintended nonlinearity or parasitic resonant modes in the qubit vicinity, degrading its coherence. Here we present a fluxonium qubit design using a granular aluminum (grAl) superinductor strip. Granular aluminum is a particularly attractive material, as it self-assembles into an effective junction array with a remarkably high kinetic inductance, and its fabrication can be in-situ integrated with standard aluminum circuit processing. The measured qubit coherence time TR2 up to 30 μs illustrates the potential of grAl for applications ranging from protected qubit designs to quantum limited amplifiers and detectors.

Quasiparticle dynamics in granular aluminum close to the superconductor to insulator transition

  1. Lukas Grünhaupt,
  2. Nataliya Maleeva,
  3. Sebastian T. Skacel,
  4. Martino Calvo,
  5. Florence Levy-Bertrand,
  6. Alexey V. Ustinov,
  7. Hannes Rotzinger,
  8. Alessandro Monfardini,
  9. Gianluigi Catelani,
  10. and Ioan M. Pop
Superconducting high kinetic inductance elements constitute a valuable resource for quantum circuit design and millimeter-wave detection. Granular aluminum (GrAl) in the superconducting
regime is a particularly interesting material since it has already shown a kinetic inductance in the range of nH/◻ and its deposition is compatible with conventional Al/AlOx/Al Josephson junction fabrication. We characterize microwave resonators fabricated from GrAl with a room temperature resistivity of 4×103μΩ⋅cm, which is a factor of 3 below the superconductor to insulator transition, showing a kinetic inductance fraction close to unity. The measured internal quality factors are on the order of Qi=105 in the single photon regime, and we demonstrate that non-equilibrium quasiparticles (QP) constitute the dominant loss mechanism. We extract QP relaxation times in the range of 1 s and we observe QP bursts every ∼20 s. The current level of coherence of GrAl resonators makes them attractive for integration in quantum devices, while it also evidences the need to reduce the density of non-equilibrium QPs.