I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
06
Mrz
2023
Learning-based Calibration of Flux Crosstalk in Transmon Qubit Arrays
Superconducting quantum processors comprising flux-tunable data and coupler qubits are a promising platform for quantum computation. However, magnetic flux crosstalk between the flux-control
lines and the constituent qubits impedes precision control of qubit frequencies, presenting a challenge to scaling this platform. In order to implement high-fidelity digital and analog quantum operations, one must characterize the flux crosstalk and compensate for it. In this work, we introduce a learning-based calibration protocol and demonstrate its experimental performance by calibrating an array of 16 flux-tunable transmon qubits. To demonstrate the extensibility of our protocol, we simulate the crosstalk matrix learning procedure for larger arrays of transmon qubits. We observe an empirically linear scaling with system size, while maintaining a median qubit frequency error below 300 kHz.
Deterministic generation of shaped single microwave photons using a parametrically driven coupler
A distributed quantum computing system requires a quantum communication channel between spatially separated processing units. In superconducting circuits, such a channel can be realized
by using propagating microwave photons to encode and transfer quantum information between an emitter and a receiver node. Here we experimentally demonstrate a superconducting circuit that deterministically transfers the state of a data qubit into a propagating microwave mode, with a process fidelity of 94.5%. We use a time-varying parametric drive to shape the temporal profile of the propagating mode to be time-symmetric and with constant phase, so that reabsorption by the receiving processor can be implemented as a time-reversed version of the emission. We demonstrate a self-calibrating routine to correct for time-dependent shifts of the emitted frequencies due to the modulation of the parametric drive. Our work provides a reliable method to implement high-fidelity quantum state transfer and remote entanglement operations in a distributed quantum computing network.
Microwave photon-number amplification
So far, quantum-limited power meters are not available in the microwave domain, hindering measurement of photon number in itinerant quantum states. On the one hand, single photon detectors
accurately detect single photons, but saturate as soon as two photons arrive simultaneously. On the other hand, more linear watt meters, such as bolometers, are too noisy to accurately detect single microwave photons. Linear amplifiers probe non-commuting observables of a signal so that they must add noise and cannot be used to detect single photons, either. Here we experimentally demonstrate a microwave photon-multiplication scheme which combines the advantages of a single photon detector and a power meter by multiplying the incoming photon number by an integer factor. Our first experimental implementation achieves a n = 3-fold multiplication with 0.69 efficiency in a 116 MHz bandwidth up to a input photon rate of 400 MHz. It loses phase information but does not require any dead time or time binning. We expect an optimised device cascading such multipliers to achieve number-resolving measurement of itinerant photons with low dark count, which would offer new possibilities in a wide range of quantum sensing and quantum computing applications.
04
Mrz
2023
Qubit Energy Tuner Based on Single Flux Quantum Circuits
A device called qubit energy tuner (QET) based on single flux quantum (SFQ) circuits is proposed for Z control of superconducting qubits. Created from the improvement of flux digital-to-analog
converters (flux DACs), a QET is able to set the energy levels or the frequencies of qubits, especially flux-tunable transmons, and perform gate operations requiring Z control. The circuit structure of QET is elucidated, which consists of an inductor loop and flux bias units for coarse tuning or fine tuning. The key feature of a QET is analyzed to understand how SFQ pulses change the inductor loop current, which provides external flux for qubits. To verify the functionality of the QET, three simulations are carried out. The first one verifies the responses of the inductor loop current to SFQ pulses. The results show that there is about 4.2% relative deviation between analytical solutions of the inductor loop current and the solutions from WRSpice time-domain simulation. The second and the third simulations with QuTip show how a Z gate and an iSWAP gate can be performed by this QET, respectively, with corresponding fidelities 99.99884% and 99.93906% for only once gate operation to specific initial states. These simulations indicate that the SFQ-based QET could act as an efficient component of SFQ-based quantum-classical interfaces for digital Z control of large-scale superconducting quantum computers.
03
Mrz
2023
Bures and Sjoqvist Metrics over Thermal State Manifolds for Spin Qubits and Superconducting Flux Qubits
The interplay among differential geometry, statistical physics, and quantum information science has been increasingly gaining theoretical interest in recent years. In this paper, we
present an explicit analysis of the Bures and Sjoqvist metrics over the manifolds of thermal states for specific spin qubit and the superconducting flux qubit Hamiltonian models. While the two metrics equally reduce to the Fubini-Study metric in the asymptotic limiting case of the inverse temperature approaching infinity for both Hamiltonian models, we observe that the two metrics are generally different when departing from the zero-temperature limit. In particular, we discuss this discrepancy in the case of the superconducting flux Hamiltonian model. We conclude the two metrics differ in the presence of a nonclassical behavior specified by the noncommutativity of neighboring mixed quantum states. Such a noncommutativity, in turn, is quantified by the two metrics in different manners. Finally, we briefly discuss possible observable consequences of this discrepancy between the two metrics when using them to predict critical and/or complex behavior of physical systems of interest in quantum information science.
Interaction-induced escape from an Aharonov-Bohm cage
Advances in quantum engineering have enabled the design, measurement, and precise control of synthetic condensed matter systems. The platform of superconducting circuits offers two
particular capabilities: flexible connectivity of circuit elements that enables a variety of lattice geometries, and circuit nonlinearity that provides access to strongly interacting physics. Separately, these features have allowed for the creation of curved-space lattices and the realization of strongly correlated phases and dynamics in one-dimensional chains and square lattices. Missing in this suite of simulations is the simultaneous integration of interacting particles into lattices with unique band dispersions, such as dispersionless flat bands. An ideal building block for flat-band physics is the Aharonov-Bohm cage: a single plaquette of a lattice whose band structure consists entirely of flat bands. Here, we experimentally construct an Aharonov-Bohm cage and observe the localization of a single photon, the hallmark of all-bands-flat physics. Upon placing an interaction-bound photon pair into the cage, we see a delocalized walk indicating an escape from Aharonov-Bohm caging. We further find that a variation of caging persists for two particles initialized on opposite sites of the cage. These results mark the first experimental work where interacting particles circumvent an Aharonov-Bohm cage and establish superconducting circuits for studies of flat-band-lattice dynamics with strong interactions.
02
Mrz
2023
Fast universal control of a flux qubit via exponentially tunable wave-function overlap
Fast, high fidelity control and readout of protected superconducting qubits are fundamentally challenging due to their inherent insensitivity. We propose a flux qubit variation which
enjoys a tunable level of protection against relaxation to resolve this outstanding issue. Our qubit design, the double-shunted flux qubit (DSFQ), realizes a generic double-well potential through its three junction ring geometry. One of the junctions is tunable, making it possible to control the barrier height and thus the level of protection. We analyze single- and two-qubit gate operations that rely on lowering the barrier. We show that this is a viable method that results in high fidelity gates as the non-computational states are not occupied during operations. Further, we show how the effective coupling to a readout resonator can be controlled by adjusting the externally applied flux while the DSFQ is protected from decaying into the readout resonator. Finally, we also study a double-loop gradiometric version of the DSFQ which is exponentially insensitive to variations in the global magnetic field, even when the loop areas are non-identical.
A high-fidelity microwave beamsplitter with a parity-protected converter
Fast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation with superconducting circuits. An attractive approach
for implementing these operations is to couple these resonators via a nonlinear converter and actuate parametric processes with RF drives. It can be challenging to make these processes simultaneously fast and high fidelity, since this requires introducing strong drives without activating parasitic processes or introducing additional decoherence channels. We show that in addition to a careful management of drive frequencies and the spectrum of environmental noise, leveraging the inbuilt symmetries of the converter Hamiltonian can suppress unwanted nonlinear interactions, preventing converter-induced decoherence. We demonstrate these principles using a differentially-driven DC-SQUID as our converter, coupled to two high-Q microwave cavities. Using this architecture, we engineer a highly-coherent beamsplitter and fast (∼ 100 ns) swaps between the cavities, limited primarily by their intrinsic single-photon loss. We characterize this beamsplitter in the cavities‘ joint single-photon subspace, and show that we can detect and post-select photon loss events to achieve a beamsplitter gate fidelity exceeding 99.98%, which to our knowledge far surpasses the current state of the art.
Thermal resistance in superconducting flip-chip assemblies
Cryogenic microsystems that utilize different 3D integration techniques are being actively developed, e.g., for the needs of quantum technologies. 3D integration can introduce opportunities
and challenges to the thermal management of low temperature devices. In this work, we investigate sub-1 K inter-chip thermal resistance of a flip-chip bonded assembly, where two silicon chips are interconnected by indium bumps by atmospheric thermocompression bonding. The temperature dependence of the inter-chip thermal resistance follows the power law of αT−3, with α=7.7−15.4 K4 μm2/nW and a thermal contact area of 0.306 mm2. The T−3 relation indicates phononic interfacial thermal resistance, which is supported by the vanishing electrical thermal conduction due to the superconducting interconnections. Such a thermal resistance value can introduce a thermalization bottleneck, which can be detrimental for some applications, but it can also be harnessed. We provide a study of the latter case by simulating the performance of solid-state junction microrefrigerator where we use the measured thermal resistance value.
Random telegraph fluctuations in granular microwave resonators
Microwave circuit electrodynamics of disordered superconductors is a very active research topic spawning a wide range of experiments and applications. For compact superconducting circuit
elements, the transition to an insulating state poses a limit to the maximum attainable kinetic inductance. It is therefore vital to study the fundamental noise properties of thin films close to this transition, particularly in situations where a good coherence and temporal stability is required. In this paper, we present measurements on superconducting granular aluminum microwave resonators with high normal state resistances, where the influence of the superconductor to insulator phase transition is visible. We trace fluctuations of the fundamental resonance frequency and observe, in addition to a 1/f noise pattern, a distinct excess noise, reminiscent of a random telegraph signal. The excess noise shows a strong dependency on the resistivity of the films as well as the sample temperature, but not on the applied microwave power.