Error budget of parametric resonance entangling gate with a tunable coupler

  1. Eyob A. Sete,
  2. Vinay Tripathi,
  3. Joseph A. Valery,
  4. Daniel Lidar,
  5. and Josh Y. Mutus
We analyze the experimental error budget of parametric resonance gates in a tunable coupler architecture. We identify and characterize various sources of errors, including incoherent,
leakage, amplitude, and phase errors. By varying the two-qubit gate time, we explore the dynamics of these errors and their impact on the gate fidelity. To accurately capture the impact of incoherent errors on gate fidelity, we measure the coherence times of qubits under gate operating conditions. Our findings reveal that the incoherent errors, mainly arising from qubit relaxation and dephasing due to white noise, limit the fidelity of the two-qubit gates. Moreover, we demonstrate that leakage to noncomputational states is the second largest contributor to the two-qubit gates infidelity, as characterized using leakage-randomized benchmarking. The error budgeting methodology we developed here can be effectively applied to other types of gate implementations.

Dynamical sweet spot engineering via two-tone flux modulation of superconducting qubits

  1. Joseph A. Valery,
  2. Shoumik Chowdhury,
  3. Glenn Jones,
  4. and Nicolas Didier
Current superconducting quantum processors require strategies for coping with material defects and imperfect parameter targeting in order to scale up while maintaining high performance.
To that end, in-situ control of qubit frequencies with magnetic flux can be used to avoid spurious resonances. However, increased dephasing due to 1/f flux noise limits performance at all of these operating points except for noise-protected sweet spots, which are sparse under DC flux bias and monochromatic flux modulation. Here we experimentally demonstrate that two-tone flux modulation can be used to create a continuum of dynamical sweet spots, greatly expanding the range of qubit frequencies achievable while first-order insensitive to slow flux noise. To illustrate some advantages of this flexibility, we use bichromatic flux control to reduce the error rates and gate times of parametric entangling operations between transmons. Independent of gate scheme, the ability to use flux control to freely select qubit frequencies while maintaining qubit coherence represents an important step forward in the robustness and scalability of near-term superconducting qubit devices.