I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
18
Jul
2021
Shortcuts to Adiabaticity for Open Systems in Circuit Quantum Electrodynamics
Shortcuts to adiabaticity (STA) are powerful quantum control methods, allowing quick evolution into target states of otherwise slow adiabatic dynamics. Such methods have widespread
applications in quantum technologies, and various STA protocols have been demonstrated in closed systems. However, realizing STA for open quantum systems has presented a greater challenge, due to complex controls required in existing proposals. Here we present the first experimental demonstration of STA for open quantum systems, using a superconducting circuit QED system consisting of two coupled bosonic oscillators and a transmon qubit. By applying a counterdiabatic driving pulse, we reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns. In addition, we propose and implement an optimal control protocol to achieve fast and qubit-unconditional equilibrium of multiple lossy modes. Our results pave the way for accelerating dynamics of open quantum systems and have potential applications in designing fast open-system protocols of physical and interdisciplinary interest, such as accelerating bioengineering and chemical reaction dynamics.
17
Jul
2021
Stark many-body localization transitions in superconducting circuits
Recent numerical and experimental works have revealed a disorder-free many-body localization (MBL) in an interacting system subjecting to a linear potential, known as the Stark MBL.The conventional MBL, induced by disorder, has been widely studied by using quantum simulations based on superconducting circuits. Here, we consider the Stark MBL in two types of superconducting circuits, i.e., the 1D array of superconducting qubits, and the circuit where non-local interactions between qubits are mediated by a resonator bus. We calculate the entanglement entropy and participate entropy of the highly-excited eigenstates, and obtain the lower bound of the critical linear potential γc, using the finite-size scaling collapse. Moreover, we study the non-equilibrium properties of the Stark MBL. In particular, we observe an anomalous relaxation of the imbalance, dominated by the power-law decay t−ξ. The exponent ξ satisfies ξ∝|γ−γc|ν when γ<γc, and vanishes for γ≥γc, which can be employed to estimate the γc. Our work indicates that superconducting circuits are a promising platform for investigating the critical properties of the Stark MBL transition.[/expand]
13
Jul
2021
Full control of superconducting qubits with combined on-chip microwave and flux lines
As the field of quantum computing progresses to larger-scale devices, multiplexing will be crucial to scale quantum processors. While multiplexed readout is common practice for superconducting
devices, relatively little work has been reported about the combination of flux and microwave control lines. Here, we present a method to integrate a microwave line and a flux line into a single „XYZ line“. This combined control line allows us to perform fast single-qubit gates as well as to deliver flux signals to the qubits. The measured relaxation times of the qubits are comparable to state-of-art devices employing separate control lines. We benchmark the fidelity of single-qubit gates with randomized benchmarking, achieving a fidelity above 99.5%, and we demonstrate that XYZ lines can in principle be used to run parametric entangling gates.
12
Jul
2021
Perspective on witnessing entanglement in hybrid quantum systems
Hybrid quantum systems aim at combining the advantages of different physical systems and to produce novel quantum devices. In particular, the hybrid combination of superconducting circuits
and spins in solid-state crystals is a versatile platform to explore many quantum electrodynamics problems. Recently, the remote coupling of nitrogen-vacancy center spins in diamond via a superconducting bus was demonstrated. However, a rigorous experimental test of the quantum nature of this hybrid system and in particular entanglement is still missing. We review the theoretical ideas to generate and detect entanglement, and present our own scheme to achieve this.
Entangled Quantum Memristors
We propose the interaction of two quantum memristors via capacitive and inductive coupling in feasible superconducting circuit architectures. In this composed system the input gets
correlated in time, which changes the dynamic response of each quantum memristor in terms of its pinched hysteresis curve and their nontrivial entanglement. In this sense, the concurrence and memristive dynamics follow an inverse behavior, showing maximal values of entanglement when the hysteresis curve is minimal and vice versa. Moreover, the direction followed in time by the hysteresis curve is reversed whenever the quantum memristor entanglement is maximal. The study of composed quantum memristors paves the way for developing neuromorphic quantum computers and native quantum neural networks, on the path towards quantum advantage with current NISQ technologies.
11
Jul
2021
Quantum transport and localization in 1d and 2d tight-binding lattices
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian. The ideal experimental emulation of such a model
utilizes simultaneous, high-fidelity control and readout of each lattice site in a highly coherent quantum system. Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable 3×3 array of superconducting qubits. We probe the propagation of entanglement throughout the lattice and extract the degree of localization in the Anderson and Wannier-Stark regimes in the presence of site-tunable disorder strengths and gradients. Our results are in quantitative agreement with numerical simulations and match theoretical predictions based on the tight-binding model. The demonstrated level of experimental control and accuracy in extracting the system observables of interest will enable the exploration of larger, interacting lattices where numerical simulations become intractable.
09
Jul
2021
Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto n coherent-state (CS) qubits, by employing 2n microwave cavities coupled
to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2n microwave or optical cavities.
Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto n coherent-state (CS) qubits, by employing 2n microwave cavities coupled
to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2n microwave or optical cavities.
Charge dynamics in quantum-circuit refrigeration: thermalization and microwave gain
Previous studies of photon-assisted tunneling through normal-metal-insulator-superconductor junctions have exhibited potential for providing a convenient tool to control the dissipation
of quantum-electric circuits in-situ. However, the current literature on such a quantum-circuit refrigerator (QCR) does not present a detailed description for the charge dynamics of the tunneling processes or the phase coherence of the open quantum system. Here we derive a master equation describing both quantum-electric and charge degrees of freedom, and discover that typical experimental parameters of low temperature and yet lower charging energy yield a separation of time scales for the charge and quantum dynamics. Consequently, the minor effect of the different charge states can be taken into account by averaging over the charge distribution. We also consider applying an ac voltage to the tunnel junction, which enables control of the decay rate of a superconducting qubit over four orders of magnitude by changing the drive amplitude; we find an order-of-magnitude drop in the qubit excitation in 40 ns and a residual reset infidelity below 10−4. Furthermore, for the normal island we consider the case of charging energy and single-particle level spacing large compared to the superconducting gap, i.e., a quantum dot. Although the decay rates arising from such a dot QCR appear low for use in qubit reset, the device can provide effective negative damping (gain) to the coupled microwave resonator. The Fano factor of such a millikelvin microwave source may be smaller than unity, with the latter value being reached close to the maximum attainable power.
06
Jul
2021
Accurate methods for the analysis of strong-drive effects in parametric gates
The ability to perform fast, high-fidelity entangling gates is an important requirement for a viable quantum processor. In practice, achieving fast gates often comes with the penalty
of strong-drive effects that are not captured by the rotating-wave approximation. These effects can be analyzed in simulations of the gate protocol, but those are computationally costly and often hide the physics at play. Here, we show how to efficiently extract gate parameters by directly solving a Floquet eigenproblem using exact numerics and a perturbative analytical approach. As an example application of this toolkit, we study the space of parametric gates generated between two fixed-frequency transmon qubits connected by a parametrically driven coupler. Our analytical treatment, based on time-dependent Schrieffer-Wolff perturbation theory, yields closed-form expressions for gate frequencies and spurious interactions, and is valid for strong drives. From these calculations, we identify optimal regimes of operation for different types of gates including iSWAP, controlled-Z, and CNOT. These analytical results are supplemented by numerical Floquet computations from which we directly extract drive-dependent gate parameters. This approach has a considerable computational advantage over full simulations of time evolutions. More generally, our combined analytical and numerical strategy allows us to characterize two-qubit gates involving parametrically driven interactions, and can be applied to gate optimization and cross-talk mitigation such as the cancellation of unwanted ZZ interactions in multi-qubit architectures.