Impact of etches on thin-film single-crystal niobium resonators

  1. H. Wang,
  2. T. Banerjee,
  3. T.G. Farinha,
  4. A.T. Hanbicki,
  5. V. Fatemi,
  6. B. S. Palmer,
  7. and C.J.K. Richardson
A single crystal niobium thin film was grown using molecular beam epitaxy on a c-plane sapphire wafer. Several samples were fabricated into dc resistivity test devices and coplanar
waveguide resonator chips using the same microfabrication procedures and solvent cleans. The samples were then subject to different acid cleaning treatments using different combinations of piranha, hydrofluoric acid, and buffered oxide etch solutions. The different samples expressed changes in dc resistivity in the normal and superconducting states such that the low temperature resistivities changed by more than 100\%, and the residual resistivity ratio dropped by a factor of 2. The internal quality factor of coplanar waveguide resonators measured near 5~GHz also showed significant variation at single photon powers ranging from 1.4×106 to less than 60×103. These changes correlate with the formation of surface crystallites that appear to be hydrocarbons. All observations are consistent with hydrogen diffusing into the niobium film at levels below the saturation threshold that is needed to observe niobium hydrides.

Long-lived topological time-crystalline order on a quantum processor

  1. Liang Xiang,
  2. Wenjie Jiang,
  3. Zehang Bao,
  4. Zixuan Song,
  5. Shibo Xu,
  6. Ke Wang,
  7. Jiachen Chen,
  8. Feitong Jin,
  9. Xuhao Zhu,
  10. Zitian Zhu,
  11. Fanhao Shen,
  12. Ning Wang,
  13. Chuanyu Zhang,
  14. Yaozu Wu,
  15. Yiren Zou,
  16. Jiarun Zhong,
  17. Zhengyi Cui,
  18. Aosai Zhang,
  19. Ziqi Tan,
  20. Tingting Li,
  21. Yu Gao,
  22. Jinfeng Deng,
  23. Xu Zhang,
  24. Hang Dong,
  25. Pengfei Zhang,
  26. Si Jiang,
  27. Weikang Li,
  28. Zhide Lu,
  29. Zheng-Zhi Sun,
  30. Hekang Li,
  31. Zhen Wang,
  32. Chao Song,
  33. Qiujiang Guo,
  34. Fangli Liu,
  35. Zhe-Xuan Gong,
  36. Alexey V. Gorshkov,
  37. Norman Y. Yao,
  38. Thomas Iadecola,
  39. Francisco Machado,
  40. H. Wang,
  41. and Dong-Ling Deng
Topologically ordered phases of matter elude Landau’s symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness
against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomenon — a prethermal topologically ordered time crystal — with programmable superconducting qubits arranged on a square lattice. By periodically driving the superconducting qubits with a surface-code Hamiltonian, we observe discrete time-translation symmetry breaking dynamics that is only manifested in the subharmonic temporal response of nonlocal logical operators. We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy and studying its subsequent dynamics. Our results demonstrate the potential to explore exotic topologically ordered nonequilibrium phases of matter with noisy intermediate-scale quantum processors.

Observation of a symmetry-protected topological time crystal with superconducting qubits

  1. Xu Zhang,
  2. Wenjie Jiang,
  3. Jinfeng Deng,
  4. Ke Wang,
  5. Jiachen Chen,
  6. Pengfei Zhang,
  7. Wenhui Ren,
  8. Hang Dong,
  9. Shibo Xu,
  10. Yu Gao,
  11. Feitong Jin,
  12. Xuhao Zhu,
  13. Qiujiang Guo,
  14. Hekang Li,
  15. Chao Song,
  16. Zhen Wang,
  17. Dong-Ling Deng,
  18. and H. Wang
We report the observation of a symmetry-protected topological time crystal, which is implemented with an array of programmable superconducting qubits. Unlike the time crystals reported
in previous experiments, where spontaneous breaking of the discrete time translational symmetry occurs for local observables throughout the whole system, the topological time crystal observed in our experiment breaks the time translational symmetry only at the boundaries and has trivial dynamics in the bulk. More concretely, we observe robust long-lived temporal correlations and sub-harmonic temporal response for the edge spins up to 40 driving cycles. We demonstrate that the sub-harmonic response is independent of whether the initial states are random product states or symmetry-protected topological states, and experimentally map out the phase boundary between the time crystalline and thermal phases. Our work paves the way to exploring peculiar non-equilibrium phases of matter emerged from the interplay between topology and localization as well as periodic driving, with current noisy intermediate-scale quantum processors.

Synthesizing five-body interaction in a superconducting quantum circuit

  1. Ke Zhang,
  2. Hekang Li,
  3. Pengfei Zhang,
  4. Jiale Yuan,
  5. Jinyan Chen,
  6. Wenhui Ren,
  7. Zhen Wang,
  8. Chao Song,
  9. Da-Wei Wang,
  10. H. Wang,
  11. Shiyao Zhu,
  12. Girish S. Agarwal,
  13. and Marlan O. Scully
Synthesizing many-body interaction Hamiltonian is a central task in quantum simulation. However, it is challenging to synthesize interactions including more than two spins. Borrowing
tools from quantum optics, we synthesize five-body spin-exchange interaction in a superconducting quantum circuit by simultaneously exciting four independent qubits with time-energy correlated photon quadruples generated from a qudit. During the dynamic evolution of the five-body interaction, a Greenberger-Horne-Zeilinger state is generated in a single step with fidelity estimated to be 0.685. We compare the influence of noise on the three-, four- and five-body interaction as a step toward answering the question on the quantum origin of chiral molecules. We also demonstrate a many-body Mach-Zehnder interferometer which potentially has a Heisenberg-limit sensitivity. This study paves a way for quantum simulation involving many-body interactions and high excited states of quantum circuits.

Metrological characterisation of non-Gaussian entangled states of superconducting qubits

  1. Kai Xu,
  2. Yu-Ran Zhang,
  3. Zheng-Hang Sun,
  4. Hekang Li,
  5. Pengtao Song,
  6. Zhongcheng Xiang,
  7. Kaixuan Huang,
  8. Hao Li,
  9. Yun-Hao Shi,
  10. Chi-Tong Chen,
  11. Xiaohui Song,
  12. Dongning Zheng,
  13. Franco Nori,
  14. H. Wang,
  15. and Heng Fan
Multipartite entangled states are significant resources for both quantum information processing and quantum metrology. In particular, non-Gaussian entangled states are predicted to
achieve a higher sensitivity of precision measurements than Gaussian states. On the basis of metrological sensitivity, the conventional linear Ramsey squeezing parameter (RSP) efficiently characterises the Gaussian entangled atomic states but fails for much wider classes of highly sensitive non-Gaussian states. These complex non-Gaussian entangled states can be classified by the nonlinear squeezing parameter (NLSP), as a generalisation of the RSP with respect to nonlinear observables, and identified via the Fisher information. However, the NLSP has never been measured experimentally. Using a 19-qubit programmable superconducting processor, here we report the characterisation of multiparticle entangled states generated during its nonlinear dynamics. First, selecting 10 qubits, we measure the RSP and the NLSP by single-shot readouts of collective spin operators in several different directions. Then, by extracting the Fisher information of the time-evolved state of all 19 qubits, we observe a large metrological gain of 9.89[Math Processing Error] dB over the standard quantum limit, indicating a high level of multiparticle entanglement for quantum-enhanced phase sensitivity. Benefiting from high-fidelity full controls and addressable single-shot readouts, the superconducting processor with interconnected qubits provides an ideal platform for engineering and benchmarking non-Gaussian entangled states that are useful for quantum-enhanced metrology.

Stark many-body localization on a superconducting quantum processor

  1. Qiujiang Guo,
  2. Chen Cheng,
  3. Hekang Li,
  4. Shibo Xu,
  5. Pengfei Zhang,
  6. Zhen Wang,
  7. Chao Song,
  8. Wuxin Liu,
  9. Wenhui Ren,
  10. Hang Dong,
  11. Rubem Mondaini,
  12. and H. Wang
Quantum emulators, owing to their large degree of tunability and control, allow the observation of fine aspects of closed quantum many-body systems, as either the regime where thermalization
takes place or when it is halted by the presence of disorder. The latter, dubbed many-body localization (MBL) phenomenon, describes the non-ergodic behavior that is dynamically identified by the preservation of local information and slow entanglement growth. Here, we provide a precise observation of this same phenomenology in the case the onsite energy landscape is not disordered, but rather linearly varied, emulating the Stark MBL. To this end, we construct a quantum device composed of thirty-two superconducting qubits, faithfully reproducing the relaxation dynamics of a non-integrable spin model. Our results describe the real-time evolution at sizes that surpass what is currently attainable by exact simulations in classical computers, signaling the onset of quantum advantage, thus bridging the way for quantum computation as a resource for solving out-of-equilibrium many-body problems.

Dielectric loss in epitaxial Al/GaAs/Al trilayers for superconducting circuits

  1. C.R.H. McRae,
  2. A. McFadden,
  3. R. Zhao,
  4. H. Wang,
  5. J. L. Long,
  6. T. Zhao,
  7. S. Park,
  8. M. Bal,
  9. C.J. Palmstrøm,
  10. and D. P. Pappas
Epitaxially-grown superconductor/dielectric/superconductor trilayers have the potential to form high-performance superconducting quantum devices and may even allow scalable superconducting
quantum computing with low-surface-area qubits such as the merged-element transmon. In this work, we measure the power-independent loss and two-level-state (TLS) loss of epitaxial, wafer-bonded, and substrate-removed Al/GaAs/Al trilayers by measuring lumped element superconducting microwave resonators at millikelvin temperatures and down to single photon powers. The power-independent loss of the device is (4.8±0.1)×10−5 and resonator-induced intrinsic TLS loss is (6.4±0.2)×10−5. Dielectric loss extraction is used to determine a lower bound of the intrinsic TLS loss of the trilayer of 7.2×10−5. The unusually high power-independent loss is attributed to GaAs’s intrinsic piezoelectricity.

Coupling a Superconducting Qubit to a Left-Handed Metamaterial Resonator

  1. S. Indrajeet,
  2. H. Wang,
  3. M. D. Hutchings,
  4. B.G. Taketani,
  5. Frank K. Wilhelm,
  6. M. D. LaHaye,
  7. and B. L. T. Plourde
Metamaterial resonant structures made from arrays of superconducting lumped circuit elements can exhibit microwave mode spectra with left-handed dispersion, resulting in a high density
of modes in the same frequency range where superconducting qubits are typically operated, as well as a bandgap at lower frequencies that extends down to dc. Using this novel regime for multi-mode circuit quantum electrodynamics, we have performed a series of measurements of such a superconducting metamaterial resonator coupled to a flux-tunable transmon qubit. Through microwave measurements of the metamaterial, we have observed the coupling of the qubit to each of the modes that it passes through. Using a separate readout resonator, we have probed the qubit dispersively and characterized the qubit energy relaxation as a function of frequency, which is strongly affected by the Purcell effect in the presence of the dense mode spectrum. Additionally, we have investigated the ac Stark shift of the qubit as the photon number in the various metamaterial modes is varied. The ability to tailor the dense mode spectrum through the choice of circuit parameters and manipulate the photonic state of the metamaterial through interactions with qubits makes this a promising platform for analog quantum simulation and quantum memories.

Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit

  1. Wenhui Ren,
  2. Wuxin Liu,
  3. Chao Song,
  4. Hekang Li,
  5. Qiujiang Guo,
  6. Zhen Wang,
  7. Dongning Zheng,
  8. Girish S. Agarwal,
  9. Marlan O. Scully,
  10. Shi-Yao Zhu,
  11. H. Wang,
  12. and Da-Wei Wang
Here we report the first observation of simultaneous excitation of two noninteracting atoms by a pair of time-frequency correlated photons in a superconducting circuit. The strong coupling
regime of this process enables the synthesis of a three-body interaction Hamiltonian, which allows the generation of the tripartite Greenberger-Horne-Zeilinger state in a single step with a fidelity as high as 0.95. We further demonstrate the quantum Zeno effect of inhibiting the simultaneous two-atom excitation by continuously measuring whether the first photon is emitted. This work provides a new route in synthesizing many-body interaction Hamiltonian and coherent control of entanglement.

A tunable coupler for suppressing adjacent superconducting qubit coupling

  1. X. Li,
  2. T. Cai,
  3. H. Yan,
  4. Z. Wang,
  5. X. Pan,
  6. Y. Ma,
  7. W. Cai,
  8. J. Han,
  9. Z. Hua,
  10. X. Han,
  11. Y. Wu,
  12. H. Zhang,
  13. H. Wang,
  14. Yipu Song,
  15. Luming Duan,
  16. and Luyan Sun
Controllable interaction between superconducting qubits is desirable for large-scale quantum computation and simulation. Here, based on a theoretical proposal by Yan et al. [Phys. Rev.
Appl. 10, 054061 (2018)] we experimentally demonstrate a simply-designed and flux-controlled tunable coupler with continuous tunability by adjusting the coupler frequency, which can completely turn off adjacent superconducting qubit coupling. Utilizing the tunable interaction between two qubits via the coupler, we implement a controlled-phase (CZ) gate by tuning one qubit frequency into and out of the usual operating point while dynamically keeping the qubit-qubit coupling off. This scheme not only efficiently suppresses the leakage out of the computational subspace but also allows for the acquired two-qubit phase being geometric at the operating point only where the coupling is on. We achieve an average CZ gate fidelity of 98.3%, which is dominantly limited by qubit decoherence. The demonstrated tunable coupler provides a desirable tool to suppress adjacent qubit coupling and is suitable for large-scale quantum computation and simulation.