Electromagnetic Simulation and Microwave Circuit Approach of Heat Transport in Superconducting Qubits

  1. Christoforus Dimas Satrya,
  2. Andrew Guthrie,
  3. Ilari Mäkinen,
  4. and Jukka P. Pekola
The study of quantum heat transport in superconducting circuits is significant for further understanding the connection between quantum mechanics and thermodynamics, and for possible
applications for quantum information. The first experimental realisations of devices demonstrating photonic heat transport mediated by a qubit have already been designed and measured. Motivated by the analysis of such experimental results, and for future experimental designs, we numerically evaluate the photonic heat transport of qubit-resonator devices in the linear circuit regime through electromagnetic simulations using Sonnet software, and compare with microwave circuit theory. We show that the method is a powerful tool to calculate heat transport and predict unwanted parasitic resonances and background.

A Cooper-Pair Box Architecture for Cyclic Quantum Heat Engines

  1. Andrew Guthrie,
  2. Christoforus Dimas Satrya,
  3. Yu-Cheng Chang,
  4. Paul Menczel,
  5. Franco Nori,
  6. and Jukka P. Pekola
Here we present an architecture for the implementation of cyclic quantum thermal engines using a superconducting circuit. The quantum engine consists of a gated Cooper-pair box, capacitively
coupled to two superconducting coplanar waveguide resonators with different frequencies, acting as thermal baths. We experimentally demonstrate the strong coupling of a charge qubit to two superconducting resonators, with the ability to perform voltage driving of the qubit at GHz frequencies. By terminating the resonators of the measured structure with normal-metal resistors whose temperature can be controlled and monitored, a quantum heat engine or refrigerator could be realized. Furthermore, we numerically evaluate the performance of our setup acting as a quantum Otto-refrigerator in the presence of realistic environmental decoherence.