Microwave quantum diode

  1. Rishabh Upadhyay,
  2. Dmitry S. Golubev,
  3. Yu-Cheng Chang,
  4. George Thomas,
  5. Andrew Guthrie,
  6. Joonas T. Peltonen,
  7. and Jukka P. Pekola
The fragile nature of quantum circuits is a major bottleneck to scalable quantum applications. Operating at cryogenic temperatures, quantum circuits are highly vulnerable to amplifier
backaction and external noise. Non-reciprocal microwave devices such as circulators and isolators are used for this purpose. These devices have a considerable footprint in cryostats, limiting the scalability of quantum circuits. We present a compact microwave diode architecture, which exploits the non-linearity of a superconducting flux qubit. At the qubit degeneracy point we experimentally demonstrate a significant difference between the power levels transmitted in opposite directions. The observations align with the proposed theoretical model. At -99 dBm input power, and near the qubit-resonator avoided crossing region, we report the transmission rectification ratio exceeding 90% for a 50 MHz wide frequency range from 6.81 GHz to 6.86 GHz, and over 60% for the 250 MHz range from 6.67 GHz to 6.91 GHz. The presented architecture is compact, and easily scalable towards multiple readout channels, potentially opening up diverse opportunities in quantum information, microwave read-out and optomechanics.

Electromagnetic Simulation and Microwave Circuit Approach of Heat Transport in Superconducting Qubits

  1. Christoforus Dimas Satrya,
  2. Andrew Guthrie,
  3. Ilari Mäkinen,
  4. and Jukka P. Pekola
The study of quantum heat transport in superconducting circuits is significant for further understanding the connection between quantum mechanics and thermodynamics, and for possible
applications for quantum information. The first experimental realisations of devices demonstrating photonic heat transport mediated by a qubit have already been designed and measured. Motivated by the analysis of such experimental results, and for future experimental designs, we numerically evaluate the photonic heat transport of qubit-resonator devices in the linear circuit regime through electromagnetic simulations using Sonnet software, and compare with microwave circuit theory. We show that the method is a powerful tool to calculate heat transport and predict unwanted parasitic resonances and background.

Photonic heat transport in three terminal superconducting circuit

  1. Azat Gubaydullin,
  2. George Thomas,
  3. Dmitry S. Golubev,
  4. Dmitrii Lvov,
  5. Joonas T. Peltonen,
  6. and Jukka P. Pekola
Quantum heat transport devices are currently intensively studied in theory. Experimental realization of quantum heat transport devices is a challenging task. So far, they have been
mostly investigated in experiments with ultra-cold atoms and single atomic traps. Experiments with superconducting qubits have also been carried out and heat transport and heat rectification has been studied in two terminal devices. The structures with three independent terminals offer additional opportunities for realization of heat transistors, heat switches, on-chip masers and even more complicated devices. Here we report an experimental realization of a three-terminal photonic heat transport device based on a superconducting quantum circuit. Its central element is a flux qubit made of a superconducting loop containing three Josephson junctions, which is connected to three resonators terminated by resistors. By heating one of the resistors and monitoring the temperatures of the other two, we determine photonic heat currents in the system and demonstrate their tunability by magnetic field at the level of 1 aW. We determine system parameters by performing microwave transmission measurements on a separate nominally identical sample and, in this way, demonstrate clear correlation between the level splitting of the qubit and the heat currents flowing through it. Our experiment is an important step in the development of on-chip quantum heat transport devices. On the one hand, such devices are of great interest for fundamental science because they allow one to investigate the effect of quantum interference and entanglement on the transport of heat. On the other hand, they also have great practical importance for the rapidly developing field of quantum computing, in which management of heat generated by qubits is a problem.

A Cooper-Pair Box Architecture for Cyclic Quantum Heat Engines

  1. Andrew Guthrie,
  2. Christoforus Dimas Satrya,
  3. Yu-Cheng Chang,
  4. Paul Menczel,
  5. Franco Nori,
  6. and Jukka P. Pekola
Here we present an architecture for the implementation of cyclic quantum thermal engines using a superconducting circuit. The quantum engine consists of a gated Cooper-pair box, capacitively
coupled to two superconducting coplanar waveguide resonators with different frequencies, acting as thermal baths. We experimentally demonstrate the strong coupling of a charge qubit to two superconducting resonators, with the ability to perform voltage driving of the qubit at GHz frequencies. By terminating the resonators of the measured structure with normal-metal resistors whose temperature can be controlled and monitored, a quantum heat engine or refrigerator could be realized. Furthermore, we numerically evaluate the performance of our setup acting as a quantum Otto-refrigerator in the presence of realistic environmental decoherence.

Robust strong coupling architecture in circuit quantum electrodynamics

  1. Rishabh Upadhyay,
  2. George Thomas,
  3. Yu-Cheng Chang,
  4. Dmitry S. Golubev,
  5. Andrew Guthrie,
  6. Azat Gubaydullin,
  7. Joonas T. Peltonen,
  8. and Jukka P. Pekola
We report on a robust method to achieve strong coupling between a superconducting flux qubit and a high-quality quarter-wavelength coplanar waveguide resonator. We demonstrate the progression
from the strong to ultrastrong coupling regime by varying the length of a shared inductive coupling element, ultimately achieving a qubit-resonator coupling strength of 655 MHz, 10% of the resonator frequency. We derive an analytical expression for the coupling strength in terms of circuit parameters and also discuss the maximum achievable coupling within this framework. We experimentally characterize flux qubits coupled to superconducting resonators using one and two-tone spectroscopy methods, demonstrating excellent agreement with the proposed theoretical model.

Using materials for quasiparticle engineering

  1. Gianluigi Catelani,
  2. and Jukka P. Pekola
The fundamental excitations in superconductors – Bogoliubov quasiparticles – can be either a resource or a liability in superconducting devices: they are what enables photon
detection in microwave kinetic inductance detectors, but they are a source of errors in qubits and electron pumps. To improve operation of the latter devices, ways to mitigate quasiparticle effects have been devised; in particular, combining different materials quasiparticles can be trapped where they do no harm and their generation can be impeded. We review recent developments in these mitigation efforts and discuss open questions.

Qubit decay in circuit quantum thermodynamics

  1. Jukka P. Pekola,
  2. and Bayan Karimi
We describe a qubit linearly coupled to a heat bath, either directly or via a cavity. The bath is formed of oscillators with a distribution of energies and coupling strengths, both
for qubit-oscillator and oscillator-oscillator interaction. A direct numerical solution of the Schrödinger equation for the full system including up to 106 oscillators in the bath and analytic solutions are given, verifying quantum decay in short time quadratic (Zeno), long time exponential and eventually power law relaxation regimes. The main new results of the paper deal with applications and implications in quantum thermodynamics setups. We start by providing a correspondence of the oscillator bath to a resistor in a circuit. With the presented techniques we can then shed light on two topical questions of open quantum systems. First, splitting a quantum to uncoupled baths is presented as an opportunity for detection of low energy photons. Second, we address quantitatively the question of separation between a quantum system and its classical environment.

Thermally pumped on-chip maser

  1. George Thomas,
  2. Azat Gubaydullin,
  3. Dmitry S. Golubev,
  4. and Jukka P. Pekola
We present a theoretical model of an on-chip three level maser in a superconducting circuit based on a single artificial atom and pumped by temperature gradient between thermal baths
coupled to different interlevel transitions. We show that maser powers of the order of few femtowatts, well exceeding the resolution of the sensitive bolometry, can be achieved with typical circuit parameters. We also demonstrate that population inversion in the artificial atom can be detected without measuring coherent radiation output of the maser. For that purpose, the system should operate as a three terminal heat transport device. The hallmark of population inversion is the influx of heat power into the weakly coupled output terminal even though its temperature exceeds the temperatures of the two other terminals.

Electric field control of radiative heat transfer in a superconducting circuit

  1. Olivier Maillet,
  2. Diego A. Subero Rengel,
  3. Joonas T. Peltonen,
  4. Dmitry S. Golubev,
  5. and Jukka P. Pekola
Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless
of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results demonstrate that the duality between charge and flux extends to heat transport, with promising applications in thermal management of quantum devices.

A quantum heat switch based on a driven qubit

  1. Cyril Elouard,
  2. George Thomas,
  3. Olivier Maillet,
  4. Jukka P. Pekola,
  5. and Andrew N. Jordan
Heat flow management at the nanoscale is of great importance for emergent quantum technologies. For instance, a thermal sink that can be activated on-demand is a highly desirable tool
that may accommodate the need to evacuate excess heat at chosen times, e.g. to maintain cryogenic temperatures or reset a quantum system to ground, and the possibility of controlled unitary evolution otherwise. Here we propose a design of such heat switch based on a single coherently driven qubit. We show that the heat flow provided by a hot source to the qubit can be switched on and off by varying external parameters, the frequency and the intensity of the driving. The complete suppression of the heat flow is a quantum effect occurring for specific driving parameters that we express and we analyze the role of the coherences in the free qubit energy eigenbasis. We finally study the feasibility of this quantum heat switch in a circuit QED setup involving a charge qubit coupled to thermal resistances. We demonstrate robustness to experimental imperfections such as additional decoherence, paving the road towards experimental verification of this effect.