Improving qubit coherence using closed-loop feedback

  1. Antti Vepsäläinen,
  2. Roni Winik,
  3. Amir H. Karamlou,
  4. Jochen Braumüller,
  5. Agustin Di Paolo,
  6. Youngkyu Sung,
  7. Bharath Kannan,
  8. Morten Kjaergaard,
  9. David K. Kim,
  10. Alexander J. Melville,
  11. Bethany M. Niedzielski,
  12. Jonilyn L. Yoder,
  13. Simon Gustavsson,
  14. and William D. Oliver
Superconducting qubits are a promising platform for building a larger-scale quantum processor capable of solving otherwise intractable problems. In order for the processor to reach
practical viability, the gate errors need to be further suppressed and remain stable for extended periods of time. With recent advances in qubit control, both single- and two-qubit gate fidelities are now in many cases limited by the coherence times of the qubits. Here we experimentally employ closed-loop feedback to stabilize the frequency fluctuations of a superconducting transmon qubit, thereby increasing its coherence time by 26\% and reducing the single-qubit error rate from (8.5±2.1)×10−4 to (5.9±0.7)×10−4. Importantly, the resulting high-fidelity operation remains effective even away from the qubit flux-noise insensitive point, significantly increasing the frequency bandwidth over which the qubit can be operated with high fidelity. This approach is helpful in large qubit grids, where frequency crowding and parasitic interactions between the qubits limit their performance.

Deep Neural Network Discrimination of Multiplexed Superconducting Qubit States

  1. Benjamin Lienhard,
  2. Antti Vepsäläinen,
  3. Luke C.G. Govia,
  4. Cole R. Hoffer,
  5. Jack Y. Qiu,
  6. Diego Ristè,
  7. Matthew Ware,
  8. David Kim,
  9. Roni Winik,
  10. Alexander Melville,
  11. Bethany Niedzielski,
  12. Jonilyn Yoder,
  13. Guilhem J. Ribeill,
  14. Thomas A. Ohki,
  15. Hari K. Krovi,
  16. Terry P. Orlando,
  17. Simon Gustavsson,
  18. and William D. Oliver
Demonstrating the quantum computational advantage will require high-fidelity control and readout of multi-qubit systems. As system size increases, multiplexed qubit readout becomes
a practical necessity to limit the growth of resource overhead. Many contemporary qubit-state discriminators presume single-qubit operating conditions or require considerable computational effort, limiting their potential extensibility. Here, we present multi-qubit readout using neural networks as state discriminators. We compare our approach to contemporary methods employed on a quantum device with five superconducting qubits and frequency-multiplexed readout. We find that fully-connected feedforward neural networks increase the qubit-state-assignment fidelity for our system. Relative to contemporary discriminators, the assignment error rate is reduced by up to 25 % due to the compensation of system-dependent nonidealities such as readout crosstalk which is reduced by up to one order of magnitude. Our work demonstrates a potentially extensible building block for high-fidelity readout relevant to both near-term devices and future fault-tolerant systems.

Probing quantum information propagation with out-of-time-ordered correlators

  1. Jochen Braumüller,
  2. Amir H. Karamlou,
  3. Yariv Yanay,
  4. Bharath Kannan,
  5. David Kim,
  6. Morten Kjaergaard,
  7. Alexander Melville,
  8. Bethany M. Niedzielski,
  9. Youngkyu Sung,
  10. Antti Vepsäläinen,
  11. Roni Winik,
  12. Jonilyn L. Yoder,
  13. Terry P. Orlando,
  14. Simon Gustavsson,
  15. Charles Tahan,
  16. and William D. Oliver
Interacting many-body quantum systems show a rich array of physical phenomena and dynamical properties, but are notoriously difficult to study: they are challenging analytically and
exponentially difficult to simulate on classical computers. Small-scale quantum information processors hold the promise to efficiently emulate these systems, but characterizing their dynamics is experimentally challenging, requiring probes beyond simple correlation functions and multi-body tomographic methods. Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs), one of the most effective tools for studying quantum system evolution and processes like quantum thermalization. We implement a 3×3 two-dimensional hard-core Bose-Hubbard lattice with a superconducting circuit, study its time-reversibility by performing a Loschmidt echo, and measure OTOCs that enable us to observe the propagation of quantum information. A central requirement for our experiments is the ability to coherently reverse time evolution, which we achieve with a digital-analog simulation scheme. In the presence of frequency disorder, we observe that localization can partially be overcome with more particles present, a possible signature of many-body localization in two dimensions.

Microwave Package Design for Superconducting Quantum Processors

  1. Sihao Huang,
  2. Benjamin Lienhard,
  3. Greg Calusine,
  4. Antti Vepsäläinen,
  5. Jochen Braumüller,
  6. David K. Kim,
  7. Alexander J. Melville,
  8. Bethany M. Niedzielski,
  9. Jonilyn L. Yoder,
  10. Bharath Kannan,
  11. Terry P. Orlando,
  12. Simon Gustavsson,
  13. and William D. Oliver
Solid-state qubits with transition frequencies in the microwave regime, such as superconducting qubits, are at the forefront of quantum information processing. However, high-fidelity,
simultaneous control of superconducting qubits at even a moderate scale remains a challenge, partly due to the complexities of packaging these devices. Here, we present an approach to microwave package design focusing on material choices, signal line engineering, and spurious mode suppression. We describe design guidelines validated using simulations and measurements used to develop a 24-port microwave package. Analyzing the qubit environment reveals no spurious modes up to 11GHz. The material and geometric design choices enable the package to support qubits with lifetimes exceeding 350 {\mu}s. The microwave package design guidelines presented here address many issues relevant for near-term quantum processors.

Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable coupler

  1. Youngkyu Sung,
  2. Leon Ding,
  3. Jochen Braumüller,
  4. Antti Vepsäläinen,
  5. Bharath Kannan,
  6. Morten Kjaergaard,
  7. Ami Greene,
  8. Gabriel O. Samach,
  9. Chris McNally,
  10. David Kim,
  11. Alexander Melville,
  12. Bethany M. Niedzielski,
  13. Mollie E. Schwartz,
  14. Jonilyn L. Yoder,
  15. Terry P. Orlando,
  16. Simon Gustavsson,
  17. and William D. Oliver
High-fidelity two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation. The advent and use of coupler elements to tunably control
two-qubit interactions has improved operational fidelity in many-qubit systems by reducing parasitic coupling and frequency crowding issues. However, two-qubit gate errors still limit the capability of near-term quantum applications. In particular, the existing framework for tunable couplers based on the dispersive approximation does not fully incorporate three-body multi-level dynamics, which are essential for addressing coherent leakage to the coupler and parasitic longitudinal (ZZ) interactions during two-qubit gates. Here, we present a new systematic approach that goes beyond the dispersive approximation and outlines how to optimize the coupler-control and exploit the engineered level structure of the coupler. Using this approach, we experimentally demonstrate a CZ gate with 99.76 ± 0.10 % fidelity and a ZZ-free iSWAP gate with 99.86 ± 0.32 % fidelity, which are close to their T1 limits.

Engineering Framework for Optimizing Superconducting Qubit Designs

  1. Fei Yan,
  2. Youngkyu Sung,
  3. Philip Krantz,
  4. Archana Kamal,
  5. David K. Kim,
  6. Jonilyn L. Yoder,
  7. Terry P. Orlando,
  8. Simon Gustavsson,
  9. and William D. Oliver
Superconducting quantum technologies require qubit systems whose properties meet several often conflicting requirements, such as long coherence times and high anharmonicity. Here, we
provide an engineering framework based on a generalized superconducting qubit model in the flux regime, which abstracts multiple circuit design parameters and thereby supports design optimization across multiple qubit properties. We experimentally investigate a special parameter regime which has both high anharmonicity (∼1GHz) and long quantum coherence times (T1=40−80μs and T2Echo=2T1).

Universal non-adiabatic control of small-gap superconducting qubits

  1. Daniel L. Campbell,
  2. Yun-Pil Shim,
  3. Bharath Kannan,
  4. Roni Winik,
  5. Alexander Melville,
  6. Bethany M. Niedzielski,
  7. Jonilyn L. Yoder,
  8. Charles Tahan,
  9. Simon Gustavsson,
  10. and William D. Oliver
Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an amazing equivalence that emerges in quantum
mechanics. While spectacularly successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the achievable gate speed) due to non-idealities like the counter-rotating term. Here, we explore a complementary approach to quantum control based on non-resonant, non-adiabatic driving of a longitudinal parameter in the presence of a fixed transverse coupling. We introduce a superconducting composite qubit (CQB), formed from two capacitively coupled transmon qubits, which features a small avoided crossing — smaller than the environmental temperature — between two energy levels. We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference to achieve fast, high-fidelity, single-qubit operations with Clifford fidelities exceeding 99.7%. We also perform coupled qubit operations between two low-frequency CQBs. This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.

Generating Spatially Entangled Itinerant Photons with Waveguide Quantum Electrodynamics

  1. Bharath Kannan,
  2. Daniel Campbell,
  3. Francisca Vasconcelos,
  4. Roni Winik,
  5. David Kim,
  6. Morten Kjaergaard,
  7. Philip Krantz,
  8. Alexander Melville,
  9. Bethany M. Niedzielski,
  10. Jonilyn Yoder,
  11. Terry P. Orlando,
  12. Simon Gustavsson,
  13. and William D. Oliver
Realizing a fully connected network of quantum processors requires the ability to distribute quantum entanglement. For distant processing nodes, this can be achieved by generating,
routing, and capturing spatially entangled itinerant photons. In this work, we demonstrate deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide. In particular, we generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons can be tuned via the qubit frequencies. Using quadrature amplitude detection, we reconstruct the moments and correlations of the photonic modes and demonstrate state preparation fidelities of 84%. Our results provide a path towards realizing quantum communication and teleportation protocols using non-classical, spatially entangled itinerant photons.

Multi-level Quantum Noise Spectroscopy

  1. Youngkyu Sung,
  2. Antti Vepsäläinen,
  3. Jochen Braumüller,
  4. Fei Yan,
  5. Joel I-Jan Wang,
  6. Morten Kjaergaard,
  7. Roni Winik,
  8. Philip Krantz,
  9. Andreas Bengtsson,
  10. Alexander J. Melville,
  11. Bethany M. Niedzielski,
  12. Mollie E. Schwartz,
  13. David K. Kim,
  14. Jonilyn L. Yoder,
  15. Terry P. Orlando,
  16. Simon Gustavsson,
  17. and William D. Oliver
System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise
affecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.

Characterizing and optimizing qubit coherence based on SQUID geometry

  1. Jochen Braumüller,
  2. Leon Ding,
  3. Antti Vepsäläinen,
  4. Youngkyu Sung,
  5. Morten Kjaergaard,
  6. Tim Menke,
  7. Roni Winik,
  8. David Kim,
  9. Bethany M. Niedzielski,
  10. Alexander Melville,
  11. Jonilyn L. Yoder,
  12. Cyrus F. Hirjibehedin,
  13. Terry P. Orlando,
  14. Simon Gustavsson,
  15. and William D. Oliver
The dominant source of decoherence in contemporary frequency-tunable superconducting qubits is 1/f flux noise. To understand its origin and find ways to minimize its impact, we systematically
study flux noise amplitudes in more than 50 flux qubits with varied SQUID geometry parameters and compare our results to a microscopic model of magnetic spin defects located at the interfaces surrounding the SQUID loops. Our data are in agreement with an extension of the previously proposed model, based on numerical simulations of the current distribution in the investigated SQUIDs. Our results and detailed model provide a guide for minimizing the flux noise susceptibility in future circuits.