Realization of Constant-Depth Fan-Out with Real-Time Feedforward on a Superconducting Quantum Processor

  1. Yongxin Song,
  2. Liberto Beltrán,
  3. Ilya Besedin,
  4. Michael Kerschbaum,
  5. Marek Pechal,
  6. François Swiadek,
  7. Christoph Hellings,
  8. Dante Colao Zanuz,
  9. Alexander Flasby,
  10. Jean-Claude Besse,
  11. and Andreas Wallraff
When using unitary gate sequences, the growth in depth of many quantum circuits with output size poses significant obstacles to practical quantum computation. The quantum fan-out operation,
which reduces the circuit depth of quantum algorithms such as the quantum Fourier transform and Shor’s algorithm, is an example that can be realized in constant depth independent of the output size. Here, we demonstrate a quantum fan-out gate with real-time feedforward on up to four output qubits using a superconducting quantum processor. By performing quantum state tomography on the output states, we benchmark our gate with input states spanning the entire Bloch sphere. We decompose the output-state error into a set of independently characterized error contributions. We extrapolate our constant-depth circuit to offer a scaling advantage compared to the unitary fan-out sequence beyond 25 output qubits with feedforward control, or beyond 17 output qubits if the classical feedforward latency is negligible. Our work highlights the potential of mid-circuit measurements combined with real-time conditional operations to improve the efficiency of complex quantum algorithms.

Mitigating Losses of Superconducting Qubits Strongly Coupled to Defect Modes

  1. Dante Colao Zanuz,
  2. Quentin Ficheux,
  3. Laurent Michaud,
  4. Alexei Orekhov,
  5. Kilian Hanke,
  6. Alexander Flasby,
  7. Mohsen Bahrami Panah,
  8. Graham J. Norris,
  9. Michael Kerschbaum,
  10. Ants Remm,
  11. François Swiadek,
  12. Christoph Hellings,
  13. Stefania Lazăr,
  14. Colin Scarato,
  15. Nathan Lacroix,
  16. Sebastian Krinner,
  17. Christopher Eichler,
  18. Andreas Wallraff,
  19. and Jean-Claude Besse
The dominant contribution to the energy relaxation of state-of-the-art superconducting qubits is often attributed to their coupling to an ensemble of material defects which behave as
two-level systems. These defects have varying microscopic characteristics which result in a large range of observable defect properties such as resonant frequencies, coherence times and coupling rates to qubits g. Here, we investigate strategies to mitigate losses to the family of defects that strongly couple to qubits (g/2π≥ 0.5 MHz). Such strongly coupled defects are particularly detrimental to the coherence of qubits and to the fidelities of operations relying on frequency excursions, such as flux-activated two-qubit gates. To assess their impact, we perform swap spectroscopy on 92 frequency-tunable qubits and quantify the spectral density of these strongly coupled modes. We show that the frequency configuration of the defects is rearranged by warming up the sample to room temperature, whereas the total number of defects on a processor tends to remain constant. We then explore methods for fabricating qubits with a reduced number of strongly coupled defect modes by systematically measuring their spectral density for decreasing Josephson junction dimensions and for various surface cleaning methods. Our results provide insights into the properties of strongly coupled defect modes and show the benefits of minimizing Josephson junction dimensions to improve qubit properties.

Fast Flux-Activated Leakage Reduction for Superconducting Quantum Circuits

  1. Nathan Lacroix,
  2. Luca Hofele,
  3. Ants Remm,
  4. Othmane Benhayoune-Khadraoui,
  5. Alexander McDonald,
  6. Ross Shillito,
  7. Stefania Lazar,
  8. Christoph Hellings,
  9. Francois Swiadek,
  10. Dante Colao Zanuz,
  11. Alexander Flasby,
  12. Mohsen Bahrami Panah,
  13. Michael Kerschbaum,
  14. Graham J. Norris,
  15. Alexandre Blais,
  16. Andreas Wallraff,
  17. and Sebastian Krinner
Quantum computers will require quantum error correction to reach the low error rates necessary for solving problems that surpass the capabilities of conventional computers. One of the
dominant errors limiting the performance of quantum error correction codes across multiple technology platforms is leakage out of the computational subspace arising from the multi-level structure of qubit implementations. Here, we present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation. This operation removes leakage down to our measurement accuracy of 7⋅10−4 in approximately 50ns with a low error of 2.5(1)⋅10−3 on the computational subspace, thereby reaching durations and fidelities comparable to those of single-qubit gates. We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion to close to what can be achieved using leakage-rejection methods which do not scale. Our approach does neither require additional control electronics nor on-chip components and is applicable to both auxiliary and data qubits. These benefits make our method particularly attractive for mitigating leakage in large-scale quantum error correction circuits, a crucial requirement for the practical implementation of fault-tolerant quantum computation.

Improved Parameter Targeting in {3D}-Integrated Superconducting Circuits through a Polymer Spacer Process

  1. Graham J. Norris,
  2. Laurent Michaud,
  3. David Pahl,
  4. Michael Kerschbaum,
  5. Christopher Eichler,
  6. Jean-Claude Besse,
  7. and Andreas Wallraff
Three-dimensional device integration facilitates the construction of superconducting quantum information processors with more than several tens of qubits by distributing elements such
as control wires, qubits, and resonators between multiple layers. The frequencies of resonators and qubits in flip-chip-bonded multi-chip modules depend on the details of their electromagnetic environment defined by the conductors and dielectrics in their vicinity. Accurate frequency targeting therefore requires precise control of the separation between chips and minimization of their relative tilt. Here, we describe a method to control the inter-chip separation by using polymer spacers. Compared to an identical process without spacers, we reduce the measured planarity error by a factor of 3.5, to a mean tilt of 76(35) μrad, and the deviation from the target inter-chip separation by a factor of ten, to a mean of 0.4(8) μm. We apply this process to coplanar waveguide resonator samples and observe chip-to-chip resonator frequency variations below 50 MHz (≈ 1 %). We measure internal quality factors of 5×105 at the single-photon level, suggesting that the added spacers are compatible with low-loss device fabrication.

Calibration of Drive Non-Linearity for Arbitrary-Angle Single-Qubit Gates Using Error Amplification

  1. Stefania Lazăr,
  2. Quentin Ficheux,
  3. Johannes Herrmann,
  4. Ants Remm,
  5. Nathan Lacroix,
  6. Christoph Hellings,
  7. Francois Swiadek,
  8. Dante Colao Zanuz,
  9. Graham J. Norris,
  10. Mohsen Bahrami Panah,
  11. Alexander Flasby,
  12. Michael Kerschbaum,
  13. Jean-Claude Besse,
  14. Christopher Eichler,
  15. and Andreas Wallraff
The ability to execute high-fidelity operations is crucial to scaling up quantum devices to large numbers of qubits. However, signal distortions originating from non-linear components
in the control lines can limit the performance of single-qubit gates. In this work, we use a measurement based on error amplification to characterize and correct the small single-qubit rotation errors originating from the non-linear scaling of the qubit drive rate with the amplitude of the programmed pulse. With our hardware, and for a 15-ns pulse, the rotation angles deviate by up to several degrees from a linear model. Using purity benchmarking, we find that control errors reach 2×10−4, which accounts for half of the total gate error. Using cross-entropy benchmarking, we demonstrate arbitrary-angle single-qubit gates with coherence-limited errors of 2×10−4 and leakage below 6×10−5. While the exact magnitude of these errors is specific to our setup, the presented method is applicable to any source of non-linearity. Our work shows that the non-linearity of qubit drive line components imposes a limit on the fidelity of single-qubit gates, independent of improvements in coherence times, circuit design, or leakage mitigation when not corrected for.

Realizing Quantum Convolutional Neural Networks on a Superconducting Quantum Processor to Recognize Quantum Phases

  1. Johannes Herrmann,
  2. Sergi Masot Llima,
  3. Ants Remm,
  4. Petr Zapletal,
  5. Nathan A. McMahon,
  6. Colin Scarato,
  7. Francois Swiadek,
  8. Christian Kraglund Andersen,
  9. Christoph Hellings,
  10. Sebastian Krinner,
  11. Nathan Lacroix,
  12. Stefania Lazar,
  13. Michael Kerschbaum,
  14. Dante Colao Zanuz,
  15. Graham J. Norris,
  16. Michael J. Hartmann,
  17. Andreas Wallraff,
  18. and Christopher Eichler
Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct
measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.