A Superconducting Qubit-Resonator Quantum Processor with Effective All-to-All Connectivity

  1. Michael Renger,
  2. Jeroen Verjauw,
  3. Nicola Wurz,
  4. Amin Hosseinkhani,
  5. Caspar Ockeloen-Korppi,
  6. Wei Liu,
  7. Aniket Rath,
  8. Manish J. Thapa,
  9. Florian Vigneau,
  10. Elisabeth Wybo,
  11. Ville Bergholm,
  12. Chun Fai Chan,
  13. Bálint Csatári,
  14. Saga Dahl,
  15. Rakhim Davletkaliyev,
  16. Rakshyakar Giri,
  17. Daria Gusenkova,
  18. Hermanni Heimonen,
  19. Tuukka Hiltunen,
  20. Hao Hsu,
  21. Eric Hyyppä,
  22. Joni Ikonen,
  23. Tyler Jones,
  24. Shabeeb Khalid,
  25. Seung-Goo Kim,
  26. Miikka Koistinen,
  27. Anton Komlev,
  28. Janne Kotilahti,
  29. Vladimir Kukushkin,
  30. Julia Lamprich,
  31. Alessandro Landra,
  32. Lan-Hsuan Lee,
  33. Tianyi Li,
  34. Per Liebermann,
  35. Sourav Majumder,
  36. Janne Mäntylä,
  37. Fabian Marxer,
  38. Arianne Meijer - van de Griend,
  39. Vladimir Milchakov,
  40. Jakub Mrożek,
  41. Jayshankar Nath,
  42. Tuure Orell,
  43. Miha Papič,
  44. Matti Partanen,
  45. Alexander Plyushch,
  46. Stefan Pogorzalek,
  47. Jussi Ritvas,
  48. Pedro Figuero Romero,
  49. Ville Sampo,
  50. Marko Seppälä,
  51. Ville Selinmaa,
  52. Linus Sundström,
  53. Ivan Takmakov,
  54. Brian Tarasinski,
  55. Jani Tuorila,
  56. Olli Tyrkkö,
  57. Alpo Välimaa,
  58. Jaap Wesdorp,
  59. Ping Yang,
  60. Liuqi Yu,
  61. Johannes Heinsoo,
  62. Antti Vepsäläinen,
  63. William Kindel,
  64. Hsiang-Sheng Ku,
  65. and Frank Deppe
In this work we introduce a superconducting quantum processor architecture that uses a transmission-line resonator to implement effective all-to-all connectivity between six transmon

Reducing leakage of single-qubit gates for superconducting quantum processors using analytical control pulse envelopes

  1. Eric Hyyppä,
  2. Antti Vepsäläinen,
  3. Miha Papič,
  4. Chun Fai Chan,
  5. Sinan Inel,
  6. Alessandro Landra,
  7. Wei Liu,
  8. Jürgen Luus,
  9. Fabian Marxer,
  10. Caspar Ockeloen-Korppi,
  11. Sebastian Orbell,
  12. Brian Tarasinski,
  13. and Johannes Heinsoo
Improving the speed and fidelity of quantum logic gates is essential to reach quantum advantage with future quantum computers. However, fast logic gates lead to increased leakage errors

Long-distance transmon coupler with CZ gate fidelity above 99.8%

  1. Fabian Marxer,
  2. Antti Vepsäläinen,
  3. Shan W. Jolin,
  4. Jani Tuorila,
  5. Alessandro Landra,
  6. Caspar Ockeloen-Korppi,
  7. Wei Liu,
  8. Olli Ahonen,
  9. Adrian Auer,
  10. Lucien Belzane,
  11. Ville Bergholm,
  12. Chun Fai Chan,
  13. Kok Wai Chan,
  14. Tuukka Hiltunen,
  15. Juho Hotari,
  16. Eric Hyyppä,
  17. Joni Ikonen,
  18. David Janzso,
  19. Miikka Koistinen,
  20. Janne Kotilahti,
  21. Tianyi Li,
  22. Jyrgen Luus,
  23. Miha Papic,
  24. Matti Partanen,
  25. Jukka Räbinä,
  26. Jari Rosti,
  27. Mykhailo Savytskyi,
  28. Marko Seppälä,
  29. Vasilii Sevriuk,
  30. Eelis Takala,
  31. Brian Tarasinski,
  32. Manish J. Thapa,
  33. Francesca Tosto,
  34. Natalia Vorobeva,
  35. Liuqi Yu,
  36. Kuan Yen Tan,
  37. Juha Hassel,
  38. Mikko Möttönen,
  39. and Johannes Heinsoo
Tunable coupling of superconducting qubits has been widely studied due to its importance for isolated gate operations in scalable quantum processor architectures. Here, we demonstrate

Unimon qubit

  1. Eric Hyyppä,
  2. Suman Kundu,
  3. Chun Fai Chan,
  4. András Gunyhó,
  5. Juho Hotari,
  6. Olavi Kiuru,
  7. Alessandro Landra,
  8. Wei Liu,
  9. Fabian Marxer,
  10. Akseli Mäkinen,
  11. Jean-Luc Orgiazzi,
  12. Mario Palma,
  13. Mykhailo Savytskyi,
  14. Francesca Tosto,
  15. Jani Tuorila,
  16. Vasilii Vadimov,
  17. Tianyi Li,
  18. Caspar Ockeloen-Korppi,
  19. Johannes Heinsoo,
  20. Kuan Yen Tan,
  21. Juha Hassel,
  22. and Mikko Möttönen
Superconducting qubits are one of the most promising candidates to implement quantum computers. The superiority of superconducting quantum computers over any classical device in simulating

Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems

  1. Paul Magnard,
  2. Simon Storz,
  3. Philipp Kurpiers,
  4. Josua Schär,
  5. Fabian Marxer,
  6. Janis Luetolf,
  7. Jean-Claude Besse,
  8. Mihai Gabureac,
  9. Kevin Reuer,
  10. Abdulkadir Akin,
  11. Baptiste Royer,
  12. Alexandre Blais,
  13. and Andreas Wallraff
Superconducting circuits are a strong contender for realizing quantum computing systems, and are also successfully used to study quantum optics and hybrid quantum systems. However,