Heat rectification via a superconducting artificial atom

  1. Jorden Senior,
  2. Azat Gubaydullin,
  3. Bayan Karimi,
  4. Joonas T. Peltonen,
  5. Joachim Ankerhold,
  6. and Jukka P. Pekola
In miniaturising electrical devices down to nanoscales, heat transfer has turned into a serious obstacle but also potential resource for future developments, both for conventional and
quantum computing architectures. Controlling heat transport in superconducting circuits has thus received increasing attention in engineering microwave environments for circuit quantum electrodynamics (cQED) and circuit quantum thermodynamics experiments (cQTD). While theoretical proposals for cQTD devices are numerous, the experimental situation is much less advanced. There exist only relatively few experimental realisations, mostly due to the difficulties in developing the hybrid devices and in interfacing these often technologically contrasting components. Here we show a realisation of a quantum heat rectifier, a thermal equivalent to the electronic diode, utilising a superconducting transmon qubit coupled to two strongly unequal resonators terminated by mesoscopic heat baths. Our work is the experimental realisation of the spin-boson rectifier proposed by Segal and Nitzan.

Characterizing Low-Quality-Factor Dissipative Superconducting Resonators

  1. Yu-Cheng Chang,
  2. Bayan Karimi,
  3. Jorden Senior,
  4. Alberto Ronzani,
  5. Joonas T. Peltonen,
  6. Hsi-Sheng Goan,
  7. Chii-Dong Chen,
  8. and Jukka P. Pekola
Characterizing superconducting microwave resonators with highly dissipative elements is a technical challenge, but a requirement for implementing and understanding the operation of
hybrid quantum devices involving dissipative elements, e.g. for thermal engineering and detection. We present experiments on λ/4 superconducting niobium coplanar waveguide (CPW) resonators, shunted at the antinode by a dissipative copper microstrip via aluminium leads, yielding a quality factor unresolvable from the typical microwave environment. By measuring the transmission both above and below this transition, we are able to isolate the resonance. We then experimentally verify this method with copper microstrips of increasing thicknesses, from 50 nm to 150 nm, and measure quality factors in the range of 10∼67 in a consistent way.