Superconducting qubits in today’s quantum processing units are typically fabricated with angle-evaporated aluminum–aluminum-oxide–aluminum Josephson junctions. However,there is an urgent need to overcome the limited reproducibility of this approach when scaling up the number of qubits and junctions. Fabrication methods based on subtractive patterning of superconductor–insulator–superconductor trilayers, used for more classical large-scale Josephson junction circuits, could provide the solution but they in turn often suffer from lossy dielectrics incompatible with high qubit coherence. In this work, we utilize native aluminum oxide as a sidewall passivation layer for junctions based on aluminum–aluminum-oxide–niobium trilayers, and use such junctions in qubits. We design the fabrication process such that the few-nanometer-thin native oxide is not exposed to oxide removal steps that could increase its defect density or hinder its ability to prevent shorting between the leads of the junction. With these junctions, we design and fabricate transmon-like qubits and measure time-averaged coherence times up to 30 μs at a qubit frequency of 5 GHz, corresponding to a qubit quality factor of one million. Our process uses subtractive patterning and optical lithography on wafer scale, enabling high throughput in patterning. This approach provides a scalable path toward fabrication of superconducting qubits on industry-standard platforms.
Feedback-based control of nano- and micromechanical resonators can enable the study of macroscopic quantum phenomena and also sensitive force measurements. Here, we demonstrate thefeedback cooling of a low-loss and high-stress macroscopic SiN membrane resonator close to its quantum ground state. We use the microwave optomechanical platform, where the resonator is coupled to a microwave cavity. The experiment utilizes a Josephson travelling wave parametric amplifier, which is nearly quantum-limited in added noise, and is important to mitigate resonator heating due to system noise in the feedback loop. We reach a thermal phonon number as low as 1.6, which is limited primarily by microwave-induced heating. We also discuss the sideband asymmetry observed when a weak microwave tone for independent readout is applied in addition to other tones used for the cooling. The asymmetry can be qualitatively attributed to the quantum-mechanical imbalance between emission and absorption. However, we find that the observed asymmetry is only partially due to this quantum effect. In specific situations, the asymmetry is fully dominated by a cavity Kerr effect under multitone irradiation.
The field of propagating quantum microwaves has started to receive considerable attention in the past few years. Motivated at first by the lack of an efficient microwave-to-opticalplatform that could solve the issue of secure communication between remote superconducting chips, current efforts are starting to reach other areas, from quantum communications to sensing. Here, we attempt at giving a state-of-the-art view of the two, pointing at some of the technical and theoretical challenges we need to address, and while providing some novel ideas and directions for future research. Hence, the goal of this paper is to provide a bigger picture, and — we hope — to inspire new ideas in quantum communications and sensing: from open-air microwave quantum key distribution to direct detection of dark matter, we expect that the recent efforts and results in quantum microwaves will soon attract a wider audience, not only in the academic community, but also in an industrial environment.