High-fidelity two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation. The advent and use of coupler elements to tunably controltwo-qubit interactions has improved operational fidelity in many-qubit systems by reducing parasitic coupling and frequency crowding issues. However, two-qubit gate errors still limit the capability of near-term quantum applications. In particular, the existing framework for tunable couplers based on the dispersive approximation does not fully incorporate three-body multi-level dynamics, which are essential for addressing coherent leakage to the coupler and parasitic longitudinal (ZZ) interactions during two-qubit gates. Here, we present a new systematic approach that goes beyond the dispersive approximation and outlines how to optimize the coupler-control and exploit the engineered level structure of the coupler. Using this approach, we experimentally demonstrate a CZ gate with 99.76 ± 0.10 % fidelity and a ZZ-free iSWAP gate with 99.86 ± 0.32 % fidelity, which are close to their T1 limits.
System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noiseaffecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.
The dominant source of decoherence in contemporary frequency-tunable superconducting qubits is 1/f flux noise. To understand its origin and find ways to minimize its impact, we systematicallystudy flux noise amplitudes in more than 50 flux qubits with varied SQUID geometry parameters and compare our results to a microscopic model of magnetic spin defects located at the interfaces surrounding the SQUID loops. Our data are in agreement with an extension of the previously proposed model, based on numerical simulations of the current distribution in the investigated SQUIDs. Our results and detailed model provide a guide for minimizing the flux noise susceptibility in future circuits.
The practical viability of any qubit technology stands on long coherence times and high-fidelity operations, with the superconducting qubit modality being a leading example. However,superconducting qubit coherence is impacted by broken Cooper pairs, referred to as quasiparticles, with a density that is empirically observed to be orders of magnitude greater than the value predicted for thermal equilibrium by the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. Previous work has shown that infrared photons significantly increase the quasiparticle density, yet even in the best isolated systems, it still remains higher than expected, suggesting that another generation mechanism exists. In this Letter, we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference, leading to an elevated quasiparticle density that would ultimately limit superconducting qubits of the type measured here to coherence times in the millisecond regime. We further demonstrate that introducing radiation shielding reduces the flux of ionizing radiation and positively correlates with increased coherence time. Albeit a small effect for today’s qubits, reducing or otherwise mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.
Adiabatic manipulation of the quantum state is an essential tool in modern quantum information processing. Here we demonstrate the speed-up of the adiabatic population transfer in athree-level superconducting transmon circuit by suppressing the spurious non-adiabatic excitations with an additional two-photon microwave pulse. We apply this superadiabatic method to the stimulated Raman adiabatic passage, realizing fast and robust population transfer from the ground state to the second excited state of the quantum circuit.
Over the past two decades, the performance of superconducting quantum circuits has tremendously improved. The progress of superconducting qubits enabled a new industry branch to emergefrom global technology enterprises to quantum computing startups. Here, an overview of superconducting quantum circuit microwave control is presented. Furthermore, we discuss one of the persistent engineering challenges in the field, how to control the electromagnetic environment of increasingly complex superconducting circuits such that they are simultaneously protected and efficiently controllable.
The achievement of fast and error-insensitive control of quantum systems is a primary goal in quantum information science. Here we use the first three levels of a transmon superconductingcircuit to realize a loop driving scheme, with all three possible pairs of states coupled by pulsed microwave tones. In this configuration, we implement a superadiabatic protocol for population transfer, where two couplings produce the standard stimulated Raman adiabatic passage, while the third is a counterdiabatic field which suppresses the nonadiabatic excitations. We demonstrate that the population can be controlled by the synthetic gauge-invariant phase around the loop as well as by the amplitudes of the three pulses. The technique enables fast operation, with transfer times approaching the quantum speed limit, and it is remarkably robust against errors in the shape of the pulses.