Quantum SWAP gate realized with CZ and iSWAP gates in a superconducting architecture

  1. Christian Križan,
  2. Janka Biznárová,
  3. Liangyu Chen,
  4. Emil Hogedal,
  5. Amr Osman,
  6. Christopher W. Warren,
  7. Sandoko Kosen,
  8. Hang-Xi Li,
  9. Tahereh Abad,
  10. Anuj Aggarwal,
  11. Marco Caputo,
  12. Jorge Fernández-Pendás,
  13. Akshay Gaikwad,
  14. Leif Grönberg,
  15. Andreas Nylander,
  16. Robert Rehammar,
  17. Marcus Rommel,
  18. Olga I. Yuzephovich,
  19. Anton Frisk Kockum,
  20. Joonas Govenius,
  21. Giovanna Tancredi,
  22. and Jonas Bylander
It is advantageous for any quantum processor to support different classes of two-qubit quantum logic gates when compiling quantum circuits, a property that is typically not seen with
existing platforms. In particular, access to a gate set that includes support for the CZ-type, the iSWAP-type, and the SWAP-type families of gates, renders conversions between these gate families unnecessary during compilation as any two-qubit Clifford gate can be executed using at most one two-qubit gate from this set, plus additional single-qubit gates. We experimentally demonstrate that a SWAP gate can be decomposed into one iSWAP gate followed by one CZ gate, affirming a more efficient compilation strategy over the conventional approach that relies on three iSWAP or three CZ gates to replace a SWAP gate. Our implementation makes use of a superconducting quantum processor design based on fixed-frequency transmon qubits coupled together by a parametrically modulated tunable transmon coupler, extending this platform’s native gate set so that any two-qubit Clifford unitary matrix can be realized using no more than two two-qubit gates and single-qubit gates.

Signal crosstalk in a flip-chip quantum processor

  1. Sandoko Kosen,
  2. Hang-Xi Li,
  3. Marcus Rommel,
  4. Robert Rehammar,
  5. Marco Caputo,
  6. Leif Grönberg,
  7. Jorge Fernández-Pendás,
  8. Anton Frisk Kockum,
  9. Janka Biznárová,
  10. Liangyu Chen,
  11. Christian Križan,
  12. Andreas Nylander,
  13. Amr Osman,
  14. Anita Fadavi Roudsari,
  15. Daryoush Shiri,
  16. Giovanna Tancredi,
  17. Joonas Govenius,
  18. and Jonas Bylander
Quantum processors require a signal-delivery architecture with high addressability (low crosstalk) to ensure high performance already at the scale of dozens of qubits. Signal crosstalk
causes inadvertent driving of quantum gates, which will adversely affect quantum-gate fidelities in scaled-up devices. Here, we demonstrate packaged flip-chip superconducting quantum processors with signal-crosstalk performance competitive with those reported in other platforms. For capacitively coupled qubit-drive lines, we find on-resonant crosstalk better than -27 dB (average -37 dB). For inductively coupled magnetic-flux-drive lines, we find less than 0.13 % direct-current flux crosstalk (average 0.05 %). These observed crosstalk levels are adequately small and indicate a decreasing trend with increasing distance, which is promising for further scaling up to larger numbers of qubits. We discuss the implication of our results for the design of a low-crosstalk, on-chip signal delivery architecture, including the influence of a shielding tunnel structure, potential sources of crosstalk, and estimation of crosstalk-induced qubit-gate error in scaled-up quantum processors.

Characterization of process-related interfacial dielectric loss in aluminum-on-silicon by resonator microwave measurements, materials analysis, and imaging

  1. Lert Chayanun,
  2. Janka Biznárová,
  3. Lunjie Zeng,
  4. Per Malmberg,
  5. Andreas Nylander,
  6. Amr Osman,
  7. Marcus Rommel,
  8. Pui Lam Tam,
  9. Eva Olsson,
  10. August Yurgens,
  11. Jonas Bylander,
  12. and Anita Fadavi Roudsari
We systematically investigate the influence of the fabrication process on dielectric loss in aluminum-on-silicon superconducting coplanar waveguide resonators with internal quality
factors (Qi) of about one million at the single-photon level. These devices are essential components in superconducting quantum processors; they also serve as proxies for understanding the energy loss of superconducting qubits. By systematically varying several fabrication steps, we identify the relative importance of reducing loss at the substrate-metal and the substrate-air interfaces. We find that it is essential to clean the silicon substrate in hydrogen fluoride (HF) prior to aluminum deposition. A post-fabrication removal of the oxides on the surface of the silicon substrate and the aluminum film by immersion in HF further improves the Qi. We observe a small, but noticeable, adverse effect on the loss by omitting either standard cleaning (SC1), pre-deposition heating of the substrate to 300°C, or in-situ post-deposition oxidation of the film’s top surface. We find no improvement due to excessive pumping meant to reach a background pressure below 6×10−8 mbar. We correlate the measured loss with microscopic properties of the substrate-metal interface through characterization with X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM).

Fast analytic and numerical design of superconducting resonators in flip-chip architectures

  1. Hang-Xi Li,
  2. Daryoush Shiri,
  3. Sandoko Kosen,
  4. Marcus Rommel,
  5. Lert Chayanun,
  6. Andreas Nylander,
  7. Robert Rehammer,
  8. Giovanna Tancredi,
  9. Marco Caputo,
  10. Kestutis Grigoras,
  11. Leif Grönberg,
  12. Joonas Govenius,
  13. and Jonas Bylander
In superconducting quantum processors, the predictability of device parameters is of increasing importance as many labs scale up their systems to larger sizes in a 3D-integrated architecture.
In particular, the properties of superconducting resonators must be controlled well to ensure high-fidelity multiplexed readout of qubits. Here we present a method, based on conformal mapping techniques, to predict a resonator’s parameters directly from its 2D cross-section, without computationally heavy simulation. We demonstrate the method’s validity by comparing the calculated resonator frequency and coupling quality factor with those obtained through 3D finite-element-method simulation and by measurement of 15 resonators in a flip-chip-integrated architecture. We achieve a discrepancy of less than 2% between designed and measured frequencies, for 6-GHz resonators. We also propose a design method that reduces the sensitivity of the resonant frequency to variations in the inter-chip spacing.