I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
13
Nov
2022
Baseband control of superconducting qubits with shared microwave drives
Accurate control of qubits is the central requirement for building functional quantum processors. For the current superconducting quantum processor, high-fidelity control of qubits
is mainly based on independently calibrated microwave pulses, which could differ from each other in frequencies, amplitudes, and phases. With this control strategy, the needed physical source could be challenging, especially when scaling up to large-scale quantum processors is considered. Inspired by Kane’s proposal for spin-based quantum computing, here, we explore theoretically the possibility of baseband flux control of superconducting qubits with only shared and always-on microwave drives. In our strategy, qubits are by default far detuned from the drive during system idle periods, qubit readout and baseband flux-controlled two-qubit gates can thus be realized with minimal impacts from the always-on drive. By contrast, during working periods, qubits are tuned on resonance with the drive and single-qubit gates can be realized. Therefore, universal qubit control can be achieved with only baseband flux pulses and always-on shared microwave drives. We apply this strategy to the qubit architecture where tunable qubits are coupled via a tunable coupler, and the analysis shows that high-fidelity qubit control is possible. Besides, the baseband control strategy needs fewer physical resources, such as control electronics and cooling power in cryogenic systems, than that of microwave control. More importantly, the flexibility of baseband flux control could be employed for addressing the non-uniformity issue of superconducting qubits, potentially allowing the realization of multiplexing and cross-bar technologies and thus controlling large numbers of qubits with fewer control lines. We thus expect that baseband control with shared microwave drives can help build large-scale superconducting quantum processors.
12
Nov
2022
Realization of two-qutrit quantum algorithms on a programmable superconducting processor
Processing quantum information using quantum three-level systems or qutrits as the fundamental unit is an alternative to contemporary qubit-based architectures with the potential to
provide significant computational advantages. We demonstrate a fully programmable two-qutrit quantum processor by utilizing the third energy eigenstates of two transmons. We develop a parametric coupler to achieve excellent connectivity in the nine-dimensional Hilbert space enabling efficient implementations of two-qutrit gates. We characterize our processor by realizing several algorithms like Deutsch-Jozsa, Bernstein-Vazirani, and Grover’s search. Our efficient ancilla-free protocols allow us to show that two stages of Grover’s amplification can improve the success rates of an unstructured search with quantum advantage. Our results pave the way for building fully programmable ternary quantum processors using transmons as building blocks for a universal quantum computer.
Noise-specific beats in the higher-level Ramsey curves of a transmon qubit
In the higher levels of superconducting transmon devices, and more generally charge sensitive devices, T∗2 measurements made in the presence of low-frequency time-correlated 1/f charge
noise and quasiparticle-induced parity flips can give an underestimation of the total dephasing time. The charge variations manifest as beating patterns observed in the overlay of several Ramsey fringe curves, and are reproduced with a phenomenological Ramsey curve model which accounts for the charge variations. T∗2 dephasing times which more accurately represent the total dephasing time are obtained. The phenomenological model is compared with a Lindblad master equation model. Both models are found to be in agreement with one another and the experimental data. Finally, the phenomenological formulation enables a simple method in which the power spectral density (PSD) for the low-frequency noise can be inferred from the overlay of several Ramsey curves.
11
Nov
2022
Hardware optimized parity check gates for superconducting surface codes
Error correcting codes use multi-qubit measurements to realize fault-tolerant quantum logic steps. In fact, the resources needed to scale-up fault-tolerant quantum computing hardware
are largely set by this task. Tailoring next-generation processors for joint measurements, therefore, could result in improvements to speed, accuracy, or cost — accelerating the development large-scale quantum computers. Here, we motivate such explorations by analyzing an unconventional surface code based on multi-body interactions between superconducting transmon qubits. Our central consideration, Hardware Optimized Parity (HOP) gates, achieves stabilizer-type measurements through simultaneous multi-qubit conditional phase accumulation. Despite the multi-body effects that underpin this approach, our estimates of logical faults suggest that this design can be at least as robust to realistic noise as conventional designs. We show a higher threshold of 1.25×10−3 compared to the standard code’s 0.79×10−3. However, in the HOP code the logical error rate decreases more slowly with decreasing physical error rate. Our results point to a fruitful path forward towards extending gate-model platforms for error correction at the dawn of its empirical development.
10
Nov
2022
X-parameter based design and simulation of Josephson traveling-wave parametric amplifiers for quantum computing applications
We present an efficient, accurate, and comprehensive analysis framework for generic, multi-port nonlinear parametric circuits, in the presence of dissipation from lossy circuit components,
based on „quantum-adapted“ X-parameters. We apply this method to Josephson traveling-wave parametric amplifiers (JTWPAs) – a key component in superconducting and spin qubit quantum computing architectures – which are challenging to model accurately due to their thousands of linear and nonlinear circuit components. X-parameters are generated from a harmonic balance solution of the classical nonlinear circuit and then mapped to the field ladder operator basis, so that the energy associated with each of the multiple interacting modes corresponds to photon occupancy, rather than classical power waves. Explicit relations for the quantum efficiency of a generic, multi-port, multi-frequency parametric circuit are presented and evaluated for two distinct JTWPA designs. The gain and quantum efficiency are consistent with those obtained from Fourier analysis of time-domain solutions, but with enhanced accuracy, speed, and the ability to include real-world impairments, statistical variations, parasitic effects, and impedance mismatches (in- and out-of-band) seamlessly. The unified flow is implemented in Keysight’s PathWave Advanced Design System (ADS) and independently in an open-source simulation code, JosephsonCircuits.jl, from the MIT authors.
Cloaking a qubit in a cavity
Cavity quantum electrodynamics (QED) uses a cavity to engineer the mode structure of the vacuum electromagnetic field such as to enhance the interaction between light and matter. Exploiting
these ideas in solid-state systems has lead to circuit QED which has emerged as a valuable tool to explore the rich physics of quantum optics and as a platform for quantum computation. Here we introduce a simple approach to further engineer the light-matter interaction in a driven cavity by controllably decoupling a qubit from the cavity’s photon population, effectively cloaking the qubit from the cavity. This is realized by driving the qubit with an external tone tailored to destructively interfere with the cavity field, leaving the qubit to interact with a cavity which appears to be in the vacuum state. Our experiment demonstrates how qubit cloaking can be exploited to cancel ac-Stark shift and measurement-induced dephasing, and to accelerate qubit readout.
Chiral coupling between a ferromagnetic magnon to a superconducting qubit
Chiral coupling at the single-quantum level promises to be a remarkable potential for quantum information processing. Here we propose to achieve a chiral interaction between a magnon
mode in a ferromagnetic sphere and a superconducting qubit mediated by a one-dimensional coupled-cavity array. When the qubit is coupled to two lattice sites of the array and each one is encoded with a tunable phase, we can acquire a directional qubit-magnon interaction via the quantum interference effect. This work opens up a new route to construct chiral devices, which are expected to become a building block in quantum magnonic networks.
02
Nov
2022
Optimizing for periodicity: a model-independent approach to flux crosstalk calibration for superconducting circuits
Flux tunability is an important engineering resource for superconducting circuits. Large-scale quantum computers based on flux-tunable superconducting circuits face the problem of flux
crosstalk, which needs to be accurately calibrated to realize high-fidelity quantum operations. Typical calibration methods either assume that circuit elements can be effectively decoupled and simple models can be applied, or require a large amount of data. Such methods become ineffective as the system size increases and circuit interactions become stronger. Here we propose a new method for calibrating flux crosstalk, which is independent of the underlying circuit model. Using the fundamental property that superconducting circuits respond periodically to external fluxes, crosstalk calibration of N flux channels can be treated as N independent optimization problems, with the objective functions being the periodicity of a measured signal depending on the compensation parameters. We demonstrate this method on a small-scale quantum annealing circuit based on superconducting flux qubits, achieving comparable accuracy with previous methods. We also show that the objective function usually has a nearly convex landscape, allowing efficient optimization.
28
Okt
2022
Robust cryogenic matched low-pass coaxial filters for quantum computing applications
Electromagnetic noise is one of the key external factors decreasing superconducting qubits coherence. Matched coaxial filters can prevent microwave and IR photons negative influence
on superconducting quantum circuits. Here, we report on design and fabrication route of matched low-pass coaxial filters for noise-sensitive measurements at milliKelvin temperatures. A robust transmission coefficient with designed linear absorption (-1dB/GHz) and ultralow reflection losses less than -20 dB up to 20 GHz is achieved. We present a mathematical model for evaluating and predicting filters transmission parameters depending on their dimensions. It is experimentally approved on two filters prototypes different lengths with compound of Cu powder and Stycast commercial resin demonstrating excellent matching. The presented design and assembly route are universal for various compounds and provide high repeatability of geometrical and microwave characteristics. Finally, we demonstrate three filters with almost equal reflection and transmission characteristics in the range from 0 to 20 GHz, which is quite useful to control multiple channel superconducting quantum circuits.
27
Okt
2022
Scaling up Superconducting Quantum Computers with Cryogenic RF-photonics
Today’s hundred-qubit quantum computers require a dramatic scale up to millions of qubits to become practical for solving real-world problems. Although a variety of qubit technologies
have been demonstrated, scalability remains a major hurdle. Superconducting (SC) qubits are one of the most mature and promising technologies to overcome this challenge. However, these qubits reside in a millikelvin cryogenic dilution fridge, isolating them from thermal and electrical noise. They are controlled by a rack-full of external electronics through extremely complex wiring and cables. Although thousands of qubits can be fabricated on a single chip and cooled down to millikelvin temperatures, scaling up the control and readout electronics remains an elusive goal. This is mainly due to the limited available cooling power in cryogenic systems constraining the wiring capacity and cabling heat load management.
In this paper, we focus on scaling up the number of XY-control lines by using cryogenic RF-photonic links. This is one of the major roadblocks to build a thousand qubit superconducting QC. We will first review and study the challenges of state-of-the-art proposed approaches, including cryogenic CMOS and deep-cryogenic photonic methods, to scale up the control interface for SC qubit systems. We will discuss their limitations due to the active power dissipation and passive heat leakage in detail. By analytically modeling the noise sources and thermal budget limits, we will show that our solution can achieve a scale up to a thousand of qubits. Our proposed method can be seamlessly implemented using advanced silicon photonic processes, and the number of required optical fibers can be further reduced by using wavelength division multiplexing (WDM).