Hardware implementation of quantum stabilizers in superconducting circuits

  1. K. Dodge,
  2. Y. Liu,
  3. A. R. Klots,
  4. B. Cole,
  5. A. Shearrow,
  6. M. Senatore,
  7. S. Zhu,
  8. L.B. Ioffe,
  9. R. McDermott,
  10. and B. L. T. Plourde
Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively,
qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux- and charge-biasing, we observe a softening of the energy band dispersion with respect to flux that is exponential in the number of frustrated plaquette elements, in close agreement with our numerical modeling.

Phonon downconversion to suppress correlated errors in superconducting qubits

  1. V. Iaia,
  2. J. Ku,
  3. A. Ballard,
  4. C. P. Larson,
  5. E. Yelton,
  6. C. H. Liu,
  7. S. Patel,
  8. R. McDermott,
  9. and B. L. T. Plourde
Quantum error correction can preserve quantum information in the presence of local errors; however, errors that are correlated across a qubit array are fatal. For superconducting qubits,
high-energy particle impacts due to background radioactivity or cosmic ray muons produce bursts of energetic phonons that travel throughout the substrate and create excitations out of the superconducting ground state, known as quasiparticles, which poison all qubits on the chip. Here we use thick normal metal reservoirs on the back side of the chip to promote rapid downconversion of phonons to sufficiently low energies where they can no longer poison qubits. We introduce a pump-probe scheme involving controlled injection of pair-breaking phonons into the qubit chips. We examine quasiparticle poisoning on chips with and without backside metallization and demonstrate a reduction in the flux of pair-breaking phonons by more than a factor of 20. In addition, we use a Ramsey interferometer scheme to simultaneously monitor quasiparticle parity on three qubits for each chip and observe a two-order of magnitude reduction in correlated poisoning due to ambient radiation. Our approach reduces correlated errors due to background radiation below the level necessary for fault-tolerant operation of a multiqubit array.

Correlated Charge Noise and Relaxation Errors in Superconducting Qubits

  1. C. D. Wilen,
  2. S. Abdullah,
  3. N. A. Kurinsky,
  4. C. Stanford,
  5. L. Cardani,
  6. G. D'Imperio,
  7. C. Tomei,
  8. L. Faoro,
  9. L.B. Ioffe,
  10. C. H. Liu,
  11. A. Opremcak,
  12. B. G. Christensen,
  13. J. L. DuBois,
  14. and R. McDermott
The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits („qubits“)
are susceptible to two types of error, corresponding to flips of the qubit state about the X- and Z-directions. While the Heisenberg Uncertainty Principle precludes simultaneous monitoring of X- and Z-flips on a single qubit, it is possible to encode quantum information in large arrays of entangled qubits that enable accurate monitoring of all errors in the system, provided the error rate is low. Another crucial requirement is that errors cannot be correlated. Here, we characterize a superconducting multiqubit circuit and find that charge fluctuations are highly correlated on a length scale over 600~μm; moreover, discrete charge jumps are accompanied by a strong transient suppression of qubit energy relaxation time across the millimeter-scale chip. The resulting correlated errors are explained in terms of the charging event and phonon-mediated quasiparticle poisoning associated with absorption of gamma rays and cosmic-ray muons in the qubit substrate. Robust quantum error correction will require the development of mitigation strategies to protect multiqubit arrays from correlated errors due to particle impacts.

High-Fidelity Measurement of a Superconducting Qubit using an On-Chip Microwave Photon Counter

  1. A. Opremcak,
  2. C. H. Liu,
  3. C. Wilen,
  4. K. Okubo,
  5. B. G. Christensen,
  6. D. Sank,
  7. T. C. White,
  8. A. Vainsencher,
  9. M. Giustina,
  10. A. Megrant,
  11. B. Burkett,
  12. B. L. T. Plourde,
  13. and R. McDermott
We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively
coupled measurement resonator to map the state of the qubit to „bright“ and „dark“ cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson Photomultipler (JPM), which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the JPM itself.

Anomalous Charge Noise in Superconducting Qubits

  1. B. G. Christensen,
  2. C. D. Wilen,
  3. A. Opremcak,
  4. J. Nelson,
  5. F. Schlenker,
  6. C. H. Zimonick,
  7. L. Faoro,
  8. L.B. Ioffe,
  9. Y. J. Rosen,
  10. J. L. DuBois,
  11. B. L. T. Plourde,
  12. and R. McDermott
We have used Ramsey tomography to characterize charge noise in a weakly charge-sensitive superconducting qubit. We find a charge noise that scales with frequency as 1/fα over 5 decades
with α=1.93 and a magnitude Sq(1Hz)=2.9×10−4 e2/Hz. The noise exponent and magnitude of the low-frequency noise are much larger than those seen in prior work on single electron transistors, yet are consistent with reports of frequency noise in other superconducting qubits. Moreover, we observe frequent large-amplitude jumps in offset charge exceeding 0.1e; these large discrete charge jumps are incompatible with a picture of localized dipole-like two-level fluctuators. The data reveal an unexpected dependence of charge noise on device scale and suggest models involving either charge drift or fluctuating patch potentials.

Scalable Hardware-Efficient Qubit Control with Single Flux Quantum Pulse Sequences

  1. Kangbo Li,
  2. R. McDermott,
  3. and Maxim G. Vavilov
The hardware overhead associated with microwave control is a major obstacle to scale-up of superconducting quantum computing. An alternative approach involves irradiation of the qubits
with trains of Single Flux Quantum (SFQ) pulses, pulses of voltage whose time integral is precisely equal to the superconducting flux quantum. Here we describe the derivation and validation of compact SFQ pulse sequences in which classical bits are clocked to the qubit at a frequency that is roughly a factor 5 higher than the qubit oscillation frequency, allowing for variable pulse-to-pulse timing. The control sequences are constructed by repeated streaming of short subsequence registers that are designed to suppress leakage out of the computational manifold. With a single global clock, high-fidelity (> 99.99%) control of qubits resonating at over 20 distinct frequencies is possible. SFQ pulses can be stored locally and delivered to the qubits via a proximal classical Josephson digital circuit, offering the possibility of a streamlined, low-footprint classical coprocessor for monitoring errors and feeding back to the qubit array.

Measurement of a Superconducting Qubit with a Microwave Photon Counter

  1. A. Opremcak,
  2. I. V. Pechenezhskiy,
  3. C. Howington,
  4. B. G. Christensen,
  5. M. A. Beck,
  6. E. Leonard Jr.,
  7. J. Suttle,
  8. C. Wilen,
  9. K. N. Nesterov,
  10. G. J. Ribeill,
  11. T. Thorbeck,
  12. F. Schlenker,
  13. M.G. Vavilov,
  14. B. L. T. Plourde,
  15. and R. McDermott
Fast, high-fidelity measurement is a key ingredient for quantum error correction. Conventional approaches to the measurement of superconducting qubits, involving linear amplification
of a microwave probe tone followed by heterodyne detection at room temperature, do not scale well to large system sizes. Here we introduce an alternative approach to measurement based on a microwave photon counter. We demonstrate raw single-shot measurement fidelity of 92%. Moreover, we exploit the intrinsic damping of the counter to extract the energy released by the measurement process, allowing repeated high-fidelity quantum non-demolition measurements. Crucially, our scheme provides access to the classical outcome of projective quantum measurement at the millikelvin stage. In a future system, counter-based measurement could form the basis for a scalable quantum-to-classical interface.

Quantum–Classical Interface Based on Single Flux Quantum Digital Logic

  1. R. McDermott,
  2. M.G. Vavilov,
  3. B. L. T. Plourde,
  4. F.K. Wilhelm,
  5. P. J. Liebermann,
  6. O. A. Mukhanov,
  7. and T. A. Ohki
We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit circuit using a proximal coprocessor based on the Single Flux Quantum (SFQ)
digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze the power budget and physical footprint of the SFQ coprocessor and discuss challenges and opportunities associated with this approach.

Reverse isolation and backaction of the SLUG microwave amplifier

  1. T. Thorbeck,
  2. S. Zhu,
  3. E. Leonard Jr.,
  4. R. Barends,
  5. J. Kelly,
  6. John M. Martinis,
  7. and R. McDermott
An ideal preamplifier for qubit measurement must not only provide high gain and near quantum-limited noise performance, but also isolate the delicate quantum circuit from noisy downstream
measurement stages while producing negligible backaction. Here we use a Superconducting Low-inductance Undulatory Galvanometer (SLUG) microwave amplifier to read out a superconducting transmon qubit, and we characterize both reverse isolation and measurement backaction of the SLUG. For appropriate dc bias, the SLUG achieves reverse isolation that is better than that of a commercial cryogenic isolator. Moreover, SLUG backaction is dominated by thermal emission from dissipative elements in the device. When the SLUG is operated in pulsed mode, it is possible to characterize the transmon qubit using a measurement chain that is free from cryogenic isolators or circulators with no measurable degradation of qubit performance.

Phonon-Mediated Quasiparticle Poisoning of Superconducting Microwave Resonators

  1. U. Patel,
  2. Ivan V. Pechenezhskiy,
  3. B. L. T. Plourde,
  4. M.G. Vavilov,
  5. and R. McDermott
Nonequilibrium quasiparticles represent a significant source of decoherence in superconducting quantum circuits. Here we investigate the mechanism of quasiparticle poisoning in devices
subjected to local quasiparticle injection. We find that quasiparticle poisoning is dominated by the propagation of pair-breaking phonons across the chip. We characterize the energy dependence of the timescale for quasiparticle poisoning. Finally, we observe that incorporation of extensive normal metal quasiparticle traps leads to a more than order of magnitude reduction in quasiparticle loss for a given injected quasiparticle power.