Integer Fluxonium Qubit

  1. Raymond A. Mencia,
  2. Wei-Ju Lin,
  3. Hyunheung Cho,
  4. Maxim G. Vavilov,
  5. and Vladimir E. Manucharyan
We describe a superconducting qubit derived from operating a properly designed fluxonium circuit in a zero magnetic field. The qubit has a frequency of about 4 GHz and the energy relaxation
quality factor Q≈0.7×107, even though the dielectric loss quality factor of the circuit components is in the low 105 range. The Ramsey coherence time exceeds 100 us, and the average fidelity of Clifford gates is benchmarked to >0.999. These figures are likely to improve by an order of magnitude with optimized fabrication and measurement procedures. Our work establishes a ready-to-use „partially protected“ superconducting qubit with an error rate comparable to the best transmons.

Characterizing losses in InAs two-dimensional electron gas-based gatemon qubits

  1. William M. Strickland,
  2. Jaewoo Lee,
  3. Lukas Baker,
  4. Krishna Dindial,
  5. Bassel Heiba Elfeky,
  6. Mehdi Hatefipour,
  7. Peng Yu,
  8. Ido Levy,
  9. Vladimir E. Manucharyan,
  10. and Javad Shabani
The tunnelling of cooper pairs across a Josephson junction (JJ) allow for the nonlinear inductance necessary to construct superconducting qubits, amplifiers, and various other quantum
circuits. An alternative approach using hybrid superconductor-semiconductor JJs can enable a superconducting qubit architecture with full electric field control. Here we present continuous-wave and time-domain characterization of gatemon qubits based on an InAs 2DEG. We show that the qubit undergoes a vacuum Rabi splitting with a readout cavity and we drive coherent Rabi oscillations between the qubit ground and first excited states. We measure qubit coherence times to be T1= 100 ns over a 1.5 GHz tunable band. While various loss mechanisms are present in III-V gatemon circuits we detail future directions in enhancing the coherence times of qubit devices on this platform.

Voltage Activated Parametric Entangling Gates on Gatemons

  1. Yinqi Chen,
  2. Konstantin N. Nesterov,
  3. Hugh Churchill,
  4. Javad Shabani,
  5. Vladimir E. Manucharyan,
  6. and Maxim G. Vavilov
We describe the generation of entangling gates on superconductor-semiconductor hybrid qubits by ac voltage modulation of the Josephson energy. Our numerical simulations demonstrate
that the unitary error can be below 10−5 in a variety of 75-ns-long two-qubit gates (CZ, iSWAP, and iSWAP‾‾‾‾‾‾‾√) implemented using parametric resonance. We analyze the conditional ZZ phase and demonstrate that the CZ gate needs no further phase correction steps, while the ZZ phase error in SWAP-type gates can be compensated by choosing pulse parameters. With decoherence considered, we estimate that qubit relaxation time needs to exceed 70μs to achieve the 99.9% fidelity threshold.

Observation of the Schmid-Bulgadaev dissipative quantum phase transition

  1. Roman Kuzmin,
  2. Nitish Mehta,
  3. Nicholas Grabon,
  4. Raymond A. Mencia,
  5. Amir Burshtein,
  6. Moshe Goldstein,
  7. and Vladimir E. Manucharyan
Although quantum mechanics applies to many macroscopic superconducting devices, one basic prediction remained controversial for decades. Namely, a Josephson junction connected to a
resistor must undergo a dissipation-induced quantum phase transition from superconductor to insulator once the resistor’s value exceeds h/4e2≈6.5 kΩ (h is Planck’s constant, e is the electron charge). Here we finally demonstrate this transition by observing the resistor’s internal dynamics. Implementing our resistor as a long transmission line section, we find that a junction scatters electromagnetic excitations in the line as either inductance (superconductor) or capacitance (insulator), depending solely on the line’s wave impedance. At the phase boundary, the junction itself acts as ideal resistance: in addition to elastic scattering, incident photons can spontaneously down-convert with a frequency-independent probability, which provides a novel marker of quantum-critical behavior.

Flip-Chip Packaging of Fluxonium Qubits

  1. Aaron Somoroff,
  2. Patrick Truitt,
  3. Adam Weis,
  4. Jacob Bernhardt,
  5. Daniel Yohannes,
  6. Jason Walter,
  7. Konstantin Kalashnikov,
  8. Raymond A. Mencia,
  9. Igor V. Vernik,
  10. Oleg Mukhanov,
  11. Maxim G. Vavilov,
  12. and Vladimir E. Manucharyan
The strong anharmonicity and high coherence times inherent to fluxonium superconducting circuits are beneficial for implementing quantum information processors. In addition to requiring
high-quality physical qubits, a quantum processor needs to be assembled in a manner that reduces crosstalk and decoherence. In this letter, we report work on fluxonium qubits packaged in a flip-chip architecture. Here, the fluxonium qubits are embedded in a multi-chip module (MCM), where a classical control and readout chip is bump-bonded to the quantum chip. The modular approach allows for improved connectivity between qubits and control/readout elements, and separate fabrication processes. We demonstrate that this configuration does not degrade the fluxonium qubit performance, and identify the main decoherence mechanisms to improve on the reported results.

Theory of strong down-conversion in multi-mode cavity and circuit QED

  1. Nitish Mehta,
  2. Cristiano Ciuti,
  3. Roman Kuzmin,
  4. and Vladimir E. Manucharyan
We revisit the superstrong coupling regime of multi-mode cavity quantum electrodynamics (QED), defined to occur when the frequency of vacuum Rabi oscillations between the qubit and
the nearest cavity mode exceeds the cavity’s free spectral range. A novel prediction is made that the cavity’s linear spectrum, measured in the vanishing power limit, can acquire an intricate fine structure associated with the qubit-induced cascades of coherent single-photon down-conversion processes. This many-body effect is hard to capture by a brute-force numerics and it is sensitive to the light-matter coupling parameters both in the infra-red and the ultra-violet limits. We focused at the example case of a superconducting fluxonium qubit coupled to a long transmission line section. The conversion rate in such a circuit QED setup can readily exceed a few MHz, which is plenty to overcome the usual decoherence processes. Analytical calculations were made possible by an unconventional gauge choice, in which the qubit circuit interacts with radiation via the flux/charge variable in the low-/high-frequency limits, respectively. Our prediction of the fine spectral structure lays the foundation for the „strong down-conversion“ regime in quantum optics, in which a single photon excited in a non-linear medium spontaneously down-converts faster than it is absorbed.

Tuning the inductance of Josephson junction arrays without SQUIDs

  1. Roman Kuzmin,
  2. Nitish Mehta,
  3. Nicholas Grabon,
  4. and Vladimir E. Manucharyan
It is customary to use arrays of superconducting quantum interference devices (SQUIDs) for implementing magnetic field-tunable inductors. Here, we demonstrate an equivalent tunability
in a (SQUID-free) array of single Al/AlOx/Al Josephson tunnel junctions. With the proper choice of junction geometry, a perpendicularly applied magnetic field bends along the plane of the superconductor and focuses into the tunnel barrier region due to a demagnetization effect. Consequently, the Josephson inductance can be efficiently modulated by the Fraunhoffer-type supercurrent interference. The elimination of SQUIDs not only simplifies the device design and fabrication, but also facilitates a denser packing of junctions and, hence, a higher inductance per unit length. As an example, we demonstrate a transmission line, the wave impedance of which is field-tuned in the range of 4−8 kΩ, centered around the important value of the resistance quantum h/(2e)2≈6.5 kΩ.

Controlled-NOT gates for fluxonium qubits via selective darkening of transitions

  1. Konstantin N. Nesterov,
  2. Chen Wang,
  3. Vladimir E. Manucharyan,
  4. and Maxim G. Vavilov
We analyze the cross-resonance effect for fluxonium circuits and investigate a two-qubit gate scheme based on selective darkening of a transition. In this approach, two microwave pulses
at the frequency of the target qubit are applied simultaneously with a proper ratio between their amplitudes to achieve a controlled-NOT operation. We study in detail coherent gate dynamics and calculate gate error. With nonunitary effects accounted for, we demonstrate that gate error below 10−4 is possible for realistic hardware parameters. This number is facilitated by long coherence times of computational transitions and strong anharmonicity of fluxoniums, which easily prevents excitation to higher excited states during the gate microwave drive.

Fast Flux Entangling Gate for Fluxonium Circuits

  1. Yinqi Chen,
  2. Konstantin N. Nesterov,
  3. Vladimir E. Manucharyan,
  4. and Maxim G. Vavilov
We analyze a high-fidelity two-qubit gate using fast flux pulses on superconducting fluxonium qubits. The gate is realized by temporarily detuning magnetic flux through fluxonium loop
away from the half flux quantum sweet spot. We simulate dynamics of two capacitively coupled fluxoniums during the flux pulses and optimize the pulse parameters to obtain a highly accurate iswap‾‾‾‾‾‾√-like entangling gate. We also evaluate the effect of the flux noise and qubit relaxation on the gate fidelity. Our results demonstrate that the gate error remains below 10−4 for currently achievable magnitude of the flux noise and qubit relaxation time.

Millisecond coherence in a superconducting qubit

  1. Aaron Somoroff,
  2. Quentin Ficheux,
  3. Raymond A. Mencia,
  4. Haonan Xiong,
  5. Roman V. Kuzmin,
  6. and Vladimir E. Manucharyan
Increasing the degree of control over physical qubits is a crucial component of quantum computing research. We report a superconducting qubit of fluxonium type with the Ramsey coherence
time reaching T∗2=1.48±0.13 ms, which exceeds the state of the art value by an order of magnitude. As a result, the average single-qubit gate fidelity grew above 0.9999, surpassing, to our knowledge, any other solid-state quantum system. Furthermore, by measuring energy relaxation of the parity-forbidden transition to second excited state, we exclude the effect of out-of-equilibrium quasiparticles on coherence in our circuit. Combined with recent demonstrations of two-qubit gates on fluxoniums, our result paves the way for the next generation of quantum processors.