Flip-Chip Packaging of Fluxonium Qubits

  1. Aaron Somoroff,
  2. Patrick Truitt,
  3. Adam Weis,
  4. Jacob Bernhardt,
  5. Daniel Yohannes,
  6. Jason Walter,
  7. Konstantin Kalashnikov,
  8. Raymond A. Mencia,
  9. Igor V. Vernik,
  10. Oleg Mukhanov,
  11. Maxim G. Vavilov,
  12. and Vladimir E. Manucharyan
The strong anharmonicity and high coherence times inherent to fluxonium superconducting circuits are beneficial for implementing quantum information processors. In addition to requiring high-quality physical qubits, a quantum processor needs to be assembled in a manner that reduces crosstalk and decoherence. In this letter, we report work on fluxonium qubits packaged in a flip-chip architecture. Here, the fluxonium qubits are embedded in a multi-chip module (MCM), where a classical control and readout chip is bump-bonded to the quantum chip. The modular approach allows for improved connectivity between qubits and control/readout elements, and separate fabrication processes. We demonstrate that this configuration does not degrade the fluxonium qubit performance, and identify the main decoherence mechanisms to improve on the reported results.

leave comment