I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
21
Dez
2023
Near-ideal Microwave Photon to Electron Conversion in a High Impedance Quantum Circuit
Photoelectric detectors cover a wide frequency spectrum spanning from the far ultraviolet to the infrared light with high sensitivity, large quantum efficiency and low dark current.
The equivalent photoelectric detection of microwave frequency photons has remained elusive due to inherent differences between microwave photon energy and the interband transition energies exploited in standard photoelectric detectors. Here we present the realization of a near-ideal microwave photon to electron converter at a frequency typical of circuit quantum electrodynamics. These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium, to enhance the light-matter interaction. This experiment constitutes an important proof of concept regarding low energy microwave photon to electron conversion unveiling new possibilities such as the detection of single microwave photons using charge detection. It finds significance in quantum research openning doors to a wide array of applications, from quantum-enhanced sensing to exploring the fundamental properties of quantum states.
Fault-tolerant quantum architectures based on erasure qubits
The overhead of quantum error correction (QEC) poses a major bottleneck for realizing fault-tolerant computation. To reduce this overhead, we exploit the idea of erasure qubits, relying
on an efficient conversion of the dominant noise into erasures at known locations. We start by introducing a formalism for QEC schemes with erasure qubits and express the corresponding decoding problem as a matching problem. Then, we propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes. Our schemes are well-suited for superconducting circuits, being compatible with planar layouts. We numerically estimate the memory thresholds for the circuit noise model that includes spreading (via entangling operations) and imperfect detection of erasures. Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
A Superconducting Single-Atom Phonon Laser
The development of quantum acoustics has enabled the cooling of mechanical objects to their quantum ground state, generation of mechanical Fock-states, and Schrodinger cat states. Such
demonstrations have made mechanical resonators attractive candidates for quantum information processing, metrology, and tests of quantum gravity theories. Here, we experimentally demonstrate a direct quantum-acoustic equivalent of a single-atom laser. A single superconducting qubit coupled to a high-overtone bulk acoustic resonator is used to drive the onset of phonon lasing. We observe the absence of a sharp lower lasing threshold and characteristic upper lasing threshold, unique predictions of single-atom lasing. Lasing of an object with an unprecedented 25 ug mass represents a new regime of laser physics and provides a foundation for integrating phonon lasers with on-chip devices.
20
Dez
2023
SQuADDS: A validated design database and simulation workflow for superconducting qubit design
We present an open-source database of superconducting quantum device designs that may be used as the starting point for customized devices. Each design can be generated programmatically
using the open-source Qiskit Metal package, and simulated using finite-element electromagnetic solvers. We present a robust workflow for achieving high accuracy on design simulations. Many designs in the database are experimentally validated, showing excellent agreement between simulated and measured parameters. Our database includes a front-end interface that allows users to generate „best-guess“ designs based on desired circuit parameters. This project lowers the barrier to entry for research groups seeking to make a new class of devices by providing them a well-characterized starting point from which to refine their designs.
Flux coupled tunable superconducting resonator
We present a design and implementation of frequency-tunable superconducting resonator. The resonance frequency tunability is achieved by flux-coupling a superconducting LC-loop to a
current-biased feedline; the resulting screening current leads to a change of the kinetic inductance and shift in the resonance frequency. The thin film aluminum resonator consists of an interdigitated capacitor and thin line inductors forming a closed superconducting loop. The magnetic flux from the nearby current feedline induces Meissner shielding currents in the resonator loop leading to change in the kinetic part of the total inductance of the resonator. We demonstarte continuous frequency tuning within 160 MHz around the resonant frequency of 2.7 GHz. We show that: (1) frequency upconversion is achieved when kHz AC modulation signal is superimposed onto the DC bias resulting in sidebands to the resonator tone; (2) three-wave mixing is attained by parametrically pumping the nonlinear kinetic inductance using a strong RF pump signal in the feedline. The simple architecture is amenable to large array multiplexing and on-chip integration with other circuit components. The concept could be applied in flux magnetometers, upconverters, and parametric amplifiers operating above 4 Kelvin cryogenic temperatures when alternative high critical temperature material with high kinetic inductance is used.
15
Dez
2023
Plasma-enhanced atomic layer deposition of titanium nitride for superconducting devices
This study presents a comprehensive investigation into the exceptional superconducting attributes of titanium nitride (TiN) achieved through plasma-enhanced atomic layer deposition
(PEALD) on both planar and intricate three-dimensional (3D) structures. We introduced an additional substrate biasing cycle to densify the film and remove ligand residues, augmenting the properties while minimizing impurities. While reactive-sputtered TiN films exhibit high quality, our technique ensures superior uniformity by consistently maintaining a desired sheet resistance greater than 95 percent across a 6inch wafer, a critical aspect for fabricating extensive arrays of superconducting devices and optimizing wafer yield. Moreover, our films demonstrate exceptional similarity to conventional reactive-sputtered films, consistently reaching a critical temperature (Tc) of 4.35 K with a thickness of around 40 nm. This marks a notable achievement compared to previously reported ALD-based superconducting TiN. Using the same process as for planar films, we obtained Tc for aspect ratios (ARs) ranging from 2 to 40, observing a Tc of approximately 2 K for ARs between 2 and 10.5. We elucidate the mechanisms contributing to the limitations and degradation of superconducting properties over these aggressive 3D structures. Our results seamlessly align with both current and next-generation superconducting technologies, meeting stringent criteria for thin-film constraints, large-scale deposition, conformality, 3D integration schemes, and yield optimization.
Dynamical Casimir cooling in circuit QED systems
A transmission line coupled to an externally driven superconducting quantum interference device (SQUID) can exhibit the Dynamical Casimir Effect (DCE). Employing this setup, we quantize
the SQUID degrees of freedom and show that it gives rise to a three-body interaction Hamiltonian with the cavity modes. By considering only two interacting modes from the cavities we show that the device can function as an autonomous cooler where the SQUID can be used as a work source to cool down the cavity modes. Moreover, this setup allows for coupling to all modes existing inside the cavities, and we show that by adding two other extra modes to the interaction with the SQUID the cooling effect can be enhanced.
14
Dez
2023
SPulseGen: Succinct pulse generator architecture maximizing gate fidelity for superconducting quantum computers
This paper proposes a cost-effective architecture for an RF pulse generator for superconducting qubits. Most existing works use arbitrary waveform generators (AWGs) that require both
a large amount of high-bandwidth memories and high-performance analog circuits to achieve the highest gate fidelity with an optimized RF pulse waveform. The proposed pulse generator architecture significantly simplifies both the generator circuit and the waveform of the RF pulse to a cost-aware square pulses. This architecture eliminates the requirement for power- and cost-intensive AWG, a major obstacle in realizing scalable quantum computers. Additionally, this paper proposes a process to optimize pulse waveforms to maximize fidelity of gate operations for single and multiple qubits. Quantum dynamics simulation of transmon qubits, wherein the state of system evolves with time, demonstrates that our pulse generator can achieve practically the same gate fidelity as ideal RF pulses, while substantially reducing the performance requirements of memory and analog circuits.
13
Dez
2023
Toolbox for nonreciprocal dispersive models in circuit QED
We provide a systematic method for constructing effective dispersive Lindblad master equations to describe weakly-anharmonic superconducting circuits coupled by a generic dissipationless
nonreciprocal linear system, with effective coupling parameters and decay rates written in terms of the immittance parameters characterizing the coupler. This article extends the foundational work of Solgun et al. (2019) for linear reciprocal couplers described by an impedance response. Here, we expand the existing toolbox to incorporate nonreciprocal elements, account for direct stray coupling between immittance ports, circumvent potential singularities, and include dissipative interactions arising from interaction with a common bath. We illustrate the use of our results with a circuit of weakly-anharmonic Josephson junctions coupled to a multiport nonreciprocal environment and a dissipative port. The results obtained here can be used for the design of complex superconducting quantum processors with non-trivial routing of quantum information, as well as analog quantum simulators of condensed matter systems.
12
Dez
2023
Multiplexed control scheme for scalable quantum information processing with superconducting qubits
The advancement of scalable quantum information processing relies on the accurate and parallel manipulation of a vast number of qubits, potentially reaching into the millions. Superconducting
qubits, traditionally controlled through individual circuitry, currently face a formidable scalability challenge due to the excessive use of wires. This challenge is nearing a critical point where it might soon surpass the capacities of on-chip routing, I/O packaging, testing platforms, and economically feasible solutions. Here we introduce a multiplexed control scheme that efficiently utilizes shared control lines for operating multiple qubits and couplers. By integrating quantum hardware-software co-design, our approach utilizes advanced techniques like frequency multiplexing and individual tuning. This enables simultaneous and independent execution of single- and two-qubit gates with significantly simplified wiring. This scheme has the potential to diminish the number of control lines by one to two orders of magnitude in the near future, thereby substantially enhancing the scalability of superconducting quantum processors.