I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
15
Mä
2021
Fabrication of superconducting through-silicon vias
Increasing circuit complexity within quantum systems based on superconducting qubits necessitates high connectivity while retaining qubit coherence. Classical micro-electronic systems
have addressed interconnect density challenges by using 3D integration with interposers containing through-silicon vias (TSVs), but extending these integration techniques to superconducting quantum systems is challenging. Here, we discuss our approach for realizing high-aspect-ratio superconducting TSVs\textemdash 10 μm wide by 20 μm long by 200 μm deep\textemdash with densities of 100 electrically isolated TSVs per square millimeter. We characterize the DC and microwave performance of superconducting TSVs at cryogenic temperatures and demonstrate superconducting critical currents greater than 20 mA. These high-aspect-ratio, high critical current superconducting TSVs will enable high-density vertical signal routing within superconducting quantum processors.
Millisecond coherence in a superconducting qubit
Increasing the degree of control over physical qubits is a crucial component of quantum computing research. We report a superconducting qubit of fluxonium type with the Ramsey coherence
time reaching T∗2=1.48±0.13 ms, which exceeds the state of the art value by an order of magnitude. As a result, the average single-qubit gate fidelity grew above 0.9999, surpassing, to our knowledge, any other solid-state quantum system. Furthermore, by measuring energy relaxation of the parity-forbidden transition to second excited state, we exclude the effect of out-of-equilibrium quasiparticles on coherence in our circuit. Combined with recent demonstrations of two-qubit gates on fluxoniums, our result paves the way for the next generation of quantum processors.
14
Mä
2021
Effects of surface treatments on flux tunable transmon qubits
One of the main limitations in state-of-the art solid-state quantum processors are qubit decoherence and relaxation due to noise in their local environment. For the field to advance
towards full fault-tolerant quantum computing, a better understanding of the underlying microscopic noise sources is therefore needed. Adsorbates on surfaces, impurities at interfaces and material defects have been identified as sources of noise and dissipation in solid-state quantum devices. Here, we use an ultra-high vacuum package to study the impact of vacuum loading, UV-light exposure and ion irradiation treatments on coherence and slow parameter fluctuations of flux tunable superconducting transmon qubits. We analyse the effects of each of these surface treatments by comparing averages over many individual qubits and measurements before and after treatment. The treatments studied do not significantly impact the relaxation rate Γ1 and the echo dephasing rate Γe2, except for Ne ion bombardment which reduces Γ1. In contrast, flux noise parameters are improved by removing magnetic adsorbates from the chip surfaces with UV-light and NH3 treatments. Additionally, we demonstrate that SF6 ion bombardment can be used to adjust qubit frequencies in-situ and post fabrication without affecting qubit coherence at the sweet spot.
13
Mä
2021
Broadband Microwave Isolation with Adiabatic Mode Conversion in Coupled Superconducting Transmission Lines
We propose a traveling wave scheme for broadband microwave isolation using parametric mode conversion in conjunction with adiabatic phase matching technique in a pair of coupled nonlinear
transmission lines. This scheme is compatible with the circuit quantum electrodynamics architecture (cQED) and provides isolation without introducing additional quantum noise. We first present the scheme in a general setting then propose an implementation with Josephson junction transmission lines. Numerical simulation shows more than 20 dB isolation over an octave bandwidth (4-8\,GHz) in a 2000 unit cell device with less than 0.05 dB insertion loss dominated by dielectric loss.
Enhanced-coherence all-nitride superconducting qubit epitaxially grown on Si Substrate
We have developed superconducting qubits based on NbN/AlN/NbN epitaxial Josephson junctions on Si substrates which promise to overcome the drawbacks of qubits based on Al/AlOx/Al junctions.
The all-nitride qubits have great advantages such as chemical stability against oxidation (resulting in fewer two-level fluctuators), feasibility for epitaxial tunnel barriers (further reducing energy relaxation and dephasing), and a larger superconducting gap of ∼5.2 meV for NbN compared to ∼0.3 meV for Al (suppressing the excitation of quasiparticles). Replacing conventional MgO by a Si substrate with a TiN buffer layer for epitaxial growth of nitride junctions, we demonstrate a qubit energy relaxation time T1=16.3 μs and a spin-echo dephasing time T2=21.5 μs. These significant improvements in quantum coherence are explained by the reduced dielectric loss compared to previously reported NbN-based qubits with MgO substrates (T1≈T2≈0.5 μs). These results are an important step towards constructing a new platform for superconducting quantum hardware.
Low-noise on-chip coherent microwave source
The increasing need for scaling up quantum computers operating in the microwave domain calls for advanced approaches for control electronics. To this end, integration of components
at cryogenic temperatures hosting also the quantum devices seems tempting. However, this comes with the limitations of ultra-low power dissipation accompanied by stringent signal-quality requirements to implement quantum-coherent operations. Here, we present a device and a technique to provide coherent continuous-wave microwave emission. We experimentally verify that its operation characteristics accurately follow our introduced theory based on a perturbative treatment of the capacitively shunted Josephson junction as a gain element. From phase noise measurements, we evaluate that the infidelity of typical quantum gate operations owing to this cryogenic source is less than 0.1% up to 10-ms evolution times, which is well below the infidelity caused by dephasing of the state-of-the-art superconducting qubits. Our device provides a coherent tone of 25 pW, corresponding to the total power needed in simultaneous control of thousands of qubits. Thus, together with future cryogenic amplitude and phase modulation techniques, our results may open pathways for scalable cryogenic control systems for quantum processors.
12
Mä
2021
Floating tunable coupler for scalable quantum computing architectures
We propose a floating tunable coupler that does not rely on direct qubit-qubit coupling capacitances to achieve the zero-coupling condition. We show that the polarity of the qubit-coupler
couplings can be engineered to offset the otherwise constant qubit-qubit coupling and attain the zero-coupling condition when the coupler frequency is above or below the qubit frequencies. We experimentally demonstrate these two operating regimes of the tunable coupler by implementing symmetric and asymmetric configurations of the coupler’s superconducting pads with respect to the qubits. Such a floating tunable coupler provides flexibility in designing large-scale quantum processors while reducing the always-on residual couplings.
11
Mä
2021
A Josephson junction supercurrent diode
Transport is called nonreciprocal when not only the sign, but also the absolute value of the current, depends on the polarity of the applied voltage. It requires simultaneously broken
inversion and time-reversal symmetries, e.g., by the interplay of spin-orbit coupling and magnetic field. So far, observation of nonreciprocity was always tied to resistivity, and dissipationless nonreciprocal circuit elements were elusive. Here, we engineer fully superconducting nonreciprocal devices based on highly-transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link nonreciprocal supercurrent to the asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient for the first time. A semi-quantitative model well explains the main features of our experimental data. Nonreciprocal Josephson junctions have the potential to become for superconducting circuits what pn-junctions are for traditional electronics, opening the way to novel nondissipative circuit elements.
08
Mä
2021
Phonon-number resolution of voltage-biased mechanical oscillators with weakly-anharmonic superconducting circuits
Observing quantum phenomena in macroscopic objects, and the potential discovery of a fundamental limit in the applicability of quantum mechanics, has been a central topic of modern
experimental physics. Highly coherent and heavy micro-mechanical oscillators controlled by superconducting circuits are a promising system for this task. Here, we focus in particular on the electrostatic coupling of motion to a weakly anharmonic circuit, namely the transmon qubit. In the case of a megahertz mechanical oscillator coupled to a gigahertz transmon, we explain the difficulties in bridging the large electro-mechanical frequency gap. To remedy this issue, we explore the requirements to reach phonon-number resolution in the resonant coupling of a megahertz transmon and a mechanical oscillator.
Arbitrary controlled-phase gate on fluxonium qubits using differential ac-Stark shifts
Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting
qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to non-computational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ-interaction due to unequal ac-Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ-term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.