Flux-driven Josephson parametric amplifiers: Hysteretic flux response and nondegenerate gain measurements

  1. Stefan Pogorzalek,
  2. Kirill G. Fedorov,
  3. Ling Zhong,
  4. Jan Goetz,
  5. Friedrich Wulschner,
  6. Michael Fischer,
  7. Peter Eder,
  8. Edwar Xie,
  9. Kunihiro Inomata,
  10. Tsuyoshi Yamamoto,
  11. Yasunobu Nakamura,
  12. Achim Marx,
  13. Frank Deppe,
  14. and Rudolf Gross
Josephson parametric amplifiers (JPA) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited

Single microwave-photon detector using an artificial Λ-type three-level system

  1. Kunihiro Inomata,
  2. Zhirong Lin,
  3. Kazuki Koshino,
  4. William D. Oliver,
  5. Jaw-Shen Tsai,
  6. Tsuyoshi Yamamoto,
  7. and Yasunobu Nakamura
Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five

Dressed-state engineering for continuous detection of itinerant microwave photons

  1. Kazuki Koshino,
  2. Zhirong Lin,
  3. Kunihiro Inomata,
  4. Tsuyoshi Yamamoto,
  5. and Yasunobu Nakamura
We propose a scheme for continuous detection of itinerant microwave photons in circuit quantum electrodynamics. In the proposed device, a superconducting qubit is coupled dispersively

Quantum magnonics: magnon meets superconducting qubit

  1. Yutaka Tabuchi,
  2. Seiichiro Ishino,
  3. Atsushi Noguchi,
  4. Toyofumi Ishikawa,
  5. Rekishu Yamazaki,
  6. Koji Usami,
  7. and Yasunobu Nakamura
The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of ferromagnetic insulator. We demonstrate, in the single-magnon limit,

Theory of microwave single-photon detection using an impedance-matched Λ system

  1. Kazuki Koshino,
  2. Kunihiro Inomata,
  3. Zhirong Lin,
  4. Yasunobu Nakamura,
  5. and Tsuyoshi Yamamoto
By properly driving a qubit-resonator system in the strong dispersive regime, we implement an „impedance-matched“ Λ system in the dressed states, where a resonant single

Coherent coupling between ferromagnetic magnon and superconducting qubit

  1. Yutaka Tabuchi,
  2. Seiichiro Ishino,
  3. Atsushi Noguchi,
  4. Toyofumi Ishikawa,
  5. Rekishu Yamazaki,
  6. Koji Usami,
  7. and Yasunobu Nakamura
Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending in macroscopic dimensions. Magnon is a quantum of an elementary excitation

Hybridizing ferromagnetic magnons and microwave photons in the quantum limit

  1. Yutaka Tabuchi,
  2. Seiichiro Ishino,
  3. Toyofumi Ishikawa,
  4. Rekishu Yamazaki,
  5. Koji Usami,
  6. and Yasunobu Nakamura
We demonstrate large normal splitting between a magnetostatic mode (the Kittel mode) in a ferromagnetic sphere of yttrium iron garnet and a microwave cavity mode. Strong coupling is

Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions

  1. Fumiki Yoshihara,
  2. Yasunobu Nakamura,
  3. Fei Yan,
  4. Simon Gustavsson,
  5. Jonas Bylander,
  6. William D. Oliver,
  7. and Jaw-Shen Tsai
We infer the high-frequency flux noise spectrum in a superconducting flux qubit by studying the decay of Rabi oscillations under strong driving conditions. The large anharmonicity of

Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions

  1. Simon Gustavsson,
  2. Olger Zwier,
  3. Jonas Bylander,
  4. Fei Yan,
  5. Fumiki Yoshihara,
  6. Yasunobu Nakamura,
  7. Terry P. Orlando,
  8. and William D. Oliver
We present a new method for determining pulse imperfections and improving the single-gate fidelity in a superconducting qubit. By applying consecutive positive and negative $pi$ pulses,

Dynamical decoupling and dephasing in interacting two-level systems

  1. Simon Gustavsson,
  2. Fei Yan,
  3. Jonas Bylander,
  4. Fumiki Yoshihara,
  5. Yasunobu Nakamura,
  6. Terry P. Orlando,
  7. and William D. Oliver
We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic