Identifying Materials-Level Sources of Performance Variation in Superconducting Transmon Qubits

  1. Akshay A. Murthy,
  2. Mustafa Bal,
  3. Michael J. Bedzyk,
  4. Hilal Cansizoglu,
  5. Randall K. Chan,
  6. Venkat Chandrasekhar,
  7. Francesco Crisa,
  8. Amlan Datta,
  9. Yanpei Deng,
  10. Celeo D. Matute Diaz,
  11. Vinayak P. Dravid,
  12. David A. Garcia-Wetten,
  13. Sabrina Garattoni,
  14. Sunil Ghimire,
  15. Dominic P. Goronzy,
  16. Sebastian de Graaf,
  17. Sam Haeuser,
  18. Mark C. Hersam,
  19. Dieter Isheim,
  20. Kamal Joshi,
  21. Richard Kim,
  22. Saagar Kolachina,
  23. Cameron J. Kopas,
  24. Matthew J. Kramer,
  25. Ella O. Lachman,
  26. Jaeyel Lee,
  27. Peter G. Lim,
  28. Andrei Lunin,
  29. William Mah,
  30. Jayss Marshall,
  31. Josh Y. Mutus,
  32. Jin-Su Oh,
  33. David Olaya,
  34. David P. Pappas,
  35. Joong-mok Park,
  36. Ruslan Prozorov,
  37. Roberto dos Reis,
  38. David N. Seidman,
  39. Zuhawn Sung,
  40. Makariy Tanatar,
  41. Mitchell J. Walker,
  42. Jigang Wang,
  43. Haotian Wu,
  44. Lin Zhou,
  45. Shaojiang Zhu,
  46. Anna Grassellino,
  47. and Alexander Romanenko
The Superconducting Materials and Systems (SQMS) Center, a DOE National Quantum Information Science Research Center, has conducted a comprehensive and coordinated study using superconducting
transmon qubit chips with known performance metrics to identify the underlying materials-level sources of device-to-device performance variation. Following qubit coherence measurements, these qubits of varying base superconducting metals and substrates have been examined with various nondestructive and invasive material characterization techniques at Northwestern University, Ames National Laboratory, and Fermilab as part of a blind study. We find trends in variations of the depth of the etched substrate trench, the thickness of the surface oxide, and the geometry of the sidewall, which when combined, lead to correlations with the T1 lifetime across different devices. In addition, we provide a list of features that varied from device to device, for which the impact on performance requires further studies. Finally, we identify two low-temperature characterization techniques that may potentially serve as proxy tools for qubit measurements. These insights provide materials-oriented solutions to not only reduce performance variations across neighboring devices, but also to engineer and fabricate devices with optimal geometries to achieve performance metrics beyond the state-of-the-art values.

Characterization of Nb films for superconducting qubits using phase boundary measurements

  1. Kevin M. Ryan,
  2. Carlos G. Torres-Castanedo,
  3. Dominic P. Goronzy,
  4. David A. Garcia Wetter,
  5. Matthew J. Reagor,
  6. Mark Field,
  7. Cameron J. Kopas,
  8. Jayss Marshall,
  9. Michael J. Bedzyk,
  10. Mark C. Hersam,
  11. and Venkat Chandrasekhar
Continued advances in superconducting qubit performance require more detailed understandings of the many sources of decoherence. Within these devices, two-level systems arise due to
defects, interfaces, and grain boundaries, and are thought to be a major source of qubit decoherence at millikelvin temperatures. In addition to Al, Nb is a commonly used metalization layer for superconducting qubits. Consequently, a significant effort is required to develop and qualify processes that mitigate defects in Nb films. As the fabrication of complete superconducting qubits and their characterization at millikelvin temperatures is a time and resource intensive process, it is desirable to have measurement tools that can rapidly characterize the properties of films and evaluate different treatments. Here we show that measurements of the variation of the superconducting critical temperature Tc with an applied external magnetic field H (of the phase boundary Tc−H) performed with very high resolution show features that are directly correlated with the structure of the Nb films. In combination with x-ray diffraction measurements, we show that one can even distinguish variations quality and crystal orientation of the grains in a Nb film by small but reproducible changes in the measured superconducting phase boundary.