We report an experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity. One of the fieldsis classical and the other is varied from quantum (vacuum fluctuations) to classical one by controlling the photon number inside the cavity. The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator. We observe a sideband anti-crossing and asymmetry in the emission spectra of the system through a one-dimensional transmission line, which is fundamentally different from the weak coupling case. By changing the photon number inside the cavity, the emission spectrum of our doubly driven system approaches to the case when the atom is driven by two classical bichromatic fields. We also measure the dynamical evolution of the system through the transmission line and study the properties of the first-order correlation function, Rabi oscillations and energy relaxation in the system. The study of resonance fluorescence from an atom driven by two fields promotes understanding decoherence in superconducting quantum circuits and may find applications in superconducting quantum computing and quantum networks.
Lattice gauge theory (LGT) is one of the most fundamental subjects in modern quantum many-body physics, and has recently attracted many research interests in quantum simulations. Herewe experimentally investigate the emergent ℤ2 gauge invariance in a 1D superconducting circuit with 10 transmon qubits. By precisely adjusting the staggered longitude and transverse fields to each qubit, we construct an effective Hamiltonian containing a LGT and gauge-broken terms. The corresponding matter sector can exhibit localization, and there also exist a 3-qubit operator, of which the expectation value can retain nonzero for long time in a low-energy regime. The above localization can be regarded as confinement of the matter field, and the 3-body operator is the ℤ2 gauge generator. Thus, these experimental results demonstrate that, despite the absent of gauge structure in the effective Hamiltonian, ℤ2 gauge invariance can still emerge in the low-energy regime. Our work paves the way for both theoretically and experimentally studying the rich physics in quantum many-body system with an emergent gauge invariance.
Multipartite entangled states are significant resources for both quantum information processing and quantum metrology. In particular, non-Gaussian entangled states are predicted toachieve a higher sensitivity of precision measurements than Gaussian states. On the basis of metrological sensitivity, the conventional linear Ramsey squeezing parameter (RSP) efficiently characterises the Gaussian entangled atomic states but fails for much wider classes of highly sensitive non-Gaussian states. These complex non-Gaussian entangled states can be classified by the nonlinear squeezing parameter (NLSP), as a generalisation of the RSP with respect to nonlinear observables, and identified via the Fisher information. However, the NLSP has never been measured experimentally. Using a 19-qubit programmable superconducting processor, here we report the characterisation of multiparticle entangled states generated during its nonlinear dynamics. First, selecting 10 qubits, we measure the RSP and the NLSP by single-shot readouts of collective spin operators in several different directions. Then, by extracting the Fisher information of the time-evolved state of all 19 qubits, we observe a large metrological gain of 9.89[Math Processing Error] dB over the standard quantum limit, indicating a high level of multiparticle entanglement for quantum-enhanced phase sensitivity. Benefiting from high-fidelity full controls and addressable single-shot readouts, the superconducting processor with interconnected qubits provides an ideal platform for engineering and benchmarking non-Gaussian entangled states that are useful for quantum-enhanced metrology.