Metrological characterisation of non-Gaussian entangled states of superconducting qubits

  1. Kai Xu,
  2. Yu-Ran Zhang,
  3. Zheng-Hang Sun,
  4. Hekang Li,
  5. Pengtao Song,
  6. Zhongcheng Xiang,
  7. Kaixuan Huang,
  8. Hao Li,
  9. Yun-Hao Shi,
  10. Chi-Tong Chen,
  11. Xiaohui Song,
  12. Dongning Zheng,
  13. Franco Nori,
  14. H. Wang,
  15. and Heng Fan
Multipartite entangled states are significant resources for both quantum information processing and quantum metrology. In particular, non-Gaussian entangled states are predicted to achieve a higher sensitivity of precision measurements than Gaussian states. On the basis of metrological sensitivity, the conventional linear Ramsey squeezing parameter (RSP) efficiently characterises the Gaussian entangled atomic states but fails for much wider classes of highly sensitive non-Gaussian states. These complex non-Gaussian entangled states can be classified by the nonlinear squeezing parameter (NLSP), as a generalisation of the RSP with respect to nonlinear observables, and identified via the Fisher information. However, the NLSP has never been measured experimentally. Using a 19-qubit programmable superconducting processor, here we report the characterisation of multiparticle entangled states generated during its nonlinear dynamics. First, selecting 10 qubits, we measure the RSP and the NLSP by single-shot readouts of collective spin operators in several different directions. Then, by extracting the Fisher information of the time-evolved state of all 19 qubits, we observe a large metrological gain of 9.89[Math Processing Error] dB over the standard quantum limit, indicating a high level of multiparticle entanglement for quantum-enhanced phase sensitivity. Benefiting from high-fidelity full controls and addressable single-shot readouts, the superconducting processor with interconnected qubits provides an ideal platform for engineering and benchmarking non-Gaussian entangled states that are useful for quantum-enhanced metrology.

leave comment