Observation of Emergent ℤ2 Gauge Invariance in a Superconducting Circuit

  1. Zhan Wang,
  2. Zi-Yong Ge,
  3. Zhongcheng Xiang,
  4. Xiaohui Song,
  5. Rui-Zhen Huang,
  6. Pengtao Song,
  7. Xue-Yi Guo,
  8. Luhong Su,
  9. Kai Xu,
  10. Dongning Zheng,
  11. and Heng Fan
Lattice gauge theory (LGT) is one of the most fundamental subjects in modern quantum many-body physics, and has recently attracted many research interests in quantum simulations. Here
we experimentally investigate the emergent ℤ2 gauge invariance in a 1D superconducting circuit with 10 transmon qubits. By precisely adjusting the staggered longitude and transverse fields to each qubit, we construct an effective Hamiltonian containing a LGT and gauge-broken terms. The corresponding matter sector can exhibit localization, and there also exist a 3-qubit operator, of which the expectation value can retain nonzero for long time in a low-energy regime. The above localization can be regarded as confinement of the matter field, and the 3-body operator is the ℤ2 gauge generator. Thus, these experimental results demonstrate that, despite the absent of gauge structure in the effective Hamiltonian, ℤ2 gauge invariance can still emerge in the low-energy regime. Our work paves the way for both theoretically and experimentally studying the rich physics in quantum many-body system with an emergent gauge invariance.

Probing Operator Spreading via Floquet Engineering in a Superconducting Circuit

  1. S. K. Zhao,
  2. Zi-Yong Ge,
  3. Zhongcheng Xiang,
  4. G. M. Xue,
  5. H. S. Yan,
  6. Z. T. Wang,
  7. Zhan Wang,
  8. H. K. Xu,
  9. F. F. Su,
  10. Z. H. Yang,
  11. He Zhang,
  12. Yu-Ran Zhang,
  13. Xue-Yi Guo,
  14. Kai Xu,
  15. Ye Tian,
  16. H. F. Yu,
  17. D. N. Zheng,
  18. Heng Fan,
  19. and S. P. Zhao
Operator spreading, often characterized by out-of-time-order correlators (OTOCs), is one of the central concepts in quantum many-body physics. However, measuring OTOCs is experimentally
challenging due to the requirement of reversing the time evolution of the system. Here we apply Floquet engineering to investigate operator spreading in a superconducting 10-qubit chain. Floquet engineering provides an effective way to tune the coupling strength between nearby qubits, which is used to demonstrate quantum walks with tunable coupling, dynamic localization, reversed time evolution, and the measurement of OTOCs. A clear light-cone-like operator propagation is observed in the system with multiphoton excitations, and the corresponding spreading velocity is equal to that of quantum walk. Our results indicate that the method has a high potential for simulating a variety of quantum many-body systems and their dynamics, which is also scalable to more qubits and higher dimensional circuits.

Observation of Bloch Oscillations and Wannier-Stark Localization on a Superconducting Processor

  1. Xue-Yi Guo,
  2. Zi-Yong Ge,
  3. Hekang Li,
  4. Zhan Wang,
  5. Yu-Ran Zhang,
  6. Peangtao Song,
  7. Zhongcheng Xiang,
  8. Xiaohui Song,
  9. Yirong Jin,
  10. Kai Xu,
  11. Dongning Zheng,
  12. and Heng Fan
In a crystal lattice system, a conduction electron can exhibit Bloch oscillations and Wannier-Stark localization (WSL) under a constant force, which has been observed in semiconductor
superlattice, photonic waveguide array and cold atom systems. Here, we experimentally investigate the Bloch oscillations on a 5-qubit superconducting processor. We simulate the electron movement with spin (or photon) propagation. We find, in the presence of a linear potential, the propagation of a single spin charge is constrained. It tends to oscillate near the neighborhood of initial positions, which is a strong signature of Bloch oscillations and WSL. In addition, we use the maximum probability that a spin charge can propagate from one boundary to another boundary to represent the WSL length, and it is verified that the localization length is inversely correlated to the potential gradient. Remarkably, benefiting from the precise simultaneous readout of the all qubits, we can also study the thermal transport of this system. The experimental results show that, similar to the spin charges, the thermal transport is also blocked under a linear potential. Our work demonstrates possibilities for further simulation and exploration of the Bloch oscillation phenomena and other quantum physics using multiqubit superconducting quantum processor.

Observation of dynamical quantum phase transition by a superconducting qubit simulation

  1. Xue-Yi Guo,
  2. Chao Yang,
  3. Yu Zeng,
  4. Yi Peng,
  5. He-Kang Li,
  6. Hui Deng,
  7. Yi-Rong Jin,
  8. Shu Chen,
  9. Dongning Zheng,
  10. and Heng Fan
A dynamical quantum phase transition can occur in time evolution of sudden quenched quantum systems across phase transition. It corresponds to nonanalytic behavior at a critical time
for rate function of quantum state return amplitude, analogous to nonanalyticity of the free energy density at the critical temperature in macroscopic systems. A variety of many-body systems can be represented in momentum space as a spin-1/2 state evolving in Bloch sphere, where each momentum mode is decoupled and thus can be simulated independently by a single qubit. Here, we report the observation of dynamical quantum phase transition by a superconducting qubit simulation of the quantum quench dynamics of many-body systems. We take the Ising model with transverse field as an example. In experiment, the spin state initially polarized longitudinally evolves based on Hamiltonian with adjustable parameters depending on momentum and strength of the transverse magnetic field. The time evolved quantum state will be readout by state tomography. Evidences of dynamical quantum phase transition such as paths of time evolution state on Bloch sphere, the non-analytic behavior in dynamical free energy and the emergence of Skyrmion lattice in momentum-time space are provided. The experiment data agrees well with theoretical and numerical calculations. The experiment demonstrates for the first time explicitly the topological invariant, both topological trivial and non-trivial, for dynamical quantum phase transition. Our experiment results show that the quantum phase transition of many-body systems can be successfully simulated by a single qubit by varying control parameter over the range of momentum.

Demonstration of irreversibility and dissipation relation of thermodynamics with a superconducting qubit

  1. Xue-Yi Guo,
  2. Yi Peng,
  3. Changnan Peng,
  4. Hui Deng,
  5. Yi-Rong Jin,
  6. Chengchun Tang,
  7. Xiaobo Zhu,
  8. Dongning Zheng,
  9. and Heng Fan
We investigate experimentally the relation between thermodynamical irreversibility and dissipation on a superconducting Xmon qubit. This relation also implies the second law and the
Landauer principle on dissipation in the irreversible computations. In our experiment, the qubit is initialized to states according to Gibbs distribution. Work injection and extraction processes are conducted through two kinds of unitary driving protocols, for both a forward process and its corresponding mirror reverses. Relative entropy and relative Re’nyi entropy are employed to measure the asymmetry between paired forward and backward work injection or extraction processes. We show experimentally that relative entropy and relative Re’nyi entropy measured irreversibility are related to the average of work dissipation and average of exponentiated work dissipation respectively. Our work provides solid experimental support for the theory of quantum thermodynamics.