Realization of Constant-Depth Fan-Out with Real-Time Feedforward on a Superconducting Quantum Processor

  1. Yongxin Song,
  2. Liberto Beltrán,
  3. Ilya Besedin,
  4. Michael Kerschbaum,
  5. Marek Pechal,
  6. François Swiadek,
  7. Christoph Hellings,
  8. Dante Colao Zanuz,
  9. Alexander Flasby,
  10. Jean-Claude Besse,
  11. and Andreas Wallraff
When using unitary gate sequences, the growth in depth of many quantum circuits with output size poses significant obstacles to practical quantum computation. The quantum fan-out operation,
which reduces the circuit depth of quantum algorithms such as the quantum Fourier transform and Shor’s algorithm, is an example that can be realized in constant depth independent of the output size. Here, we demonstrate a quantum fan-out gate with real-time feedforward on up to four output qubits using a superconducting quantum processor. By performing quantum state tomography on the output states, we benchmark our gate with input states spanning the entire Bloch sphere. We decompose the output-state error into a set of independently characterized error contributions. We extrapolate our constant-depth circuit to offer a scaling advantage compared to the unitary fan-out sequence beyond 25 output qubits with feedforward control, or beyond 17 output qubits if the classical feedforward latency is negligible. Our work highlights the potential of mid-circuit measurements combined with real-time conditional operations to improve the efficiency of complex quantum algorithms.

Deterministic generation of a 20-qubit two-dimensional photonic cluster state

  1. James O'Sullivan,
  2. Kevin Reuer,
  3. Aleksandr Grigorev,
  4. Xi Dai,
  5. Alonso Hernández-Antón,
  6. Manuel H. Muñoz-Arias,
  7. Christoph Hellings,
  8. Alexander Flasby,
  9. Dante Colao Zanuz,
  10. Jean-Claude Besse,
  11. Alexandre Blais,
  12. Daniel Malz,
  13. Christopher Eichler,
  14. and Andreas Wallraff
Multidimensional cluster states are a key resource for robust quantum communication, measurement-based quantum computing and quantum metrology. Here, we present a device capable of
emitting large-scale entangled microwave photonic states in a two dimensional ladder structure. The device consists of a pair of coupled superconducting transmon qubits which are each tuneably coupled to a common output waveguide. This architecture permits entanglement between each transmon and a deterministically emitted photonic qubit. By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons. We measure a signature of localizable entanglement across up to 20 photonic qubits. We expect the device architecture to be capable of generating a wide range of other tensor network states such as tree graph states, repeater states or the ground state of the toric code, and to be readily scalable to generate larger and higher dimensional states.

Mitigating Losses of Superconducting Qubits Strongly Coupled to Defect Modes

  1. Dante Colao Zanuz,
  2. Quentin Ficheux,
  3. Laurent Michaud,
  4. Alexei Orekhov,
  5. Kilian Hanke,
  6. Alexander Flasby,
  7. Mohsen Bahrami Panah,
  8. Graham J. Norris,
  9. Michael Kerschbaum,
  10. Ants Remm,
  11. François Swiadek,
  12. Christoph Hellings,
  13. Stefania Lazăr,
  14. Colin Scarato,
  15. Nathan Lacroix,
  16. Sebastian Krinner,
  17. Christopher Eichler,
  18. Andreas Wallraff,
  19. and Jean-Claude Besse
The dominant contribution to the energy relaxation of state-of-the-art superconducting qubits is often attributed to their coupling to an ensemble of material defects which behave as
two-level systems. These defects have varying microscopic characteristics which result in a large range of observable defect properties such as resonant frequencies, coherence times and coupling rates to qubits g. Here, we investigate strategies to mitigate losses to the family of defects that strongly couple to qubits (g/2π≥ 0.5 MHz). Such strongly coupled defects are particularly detrimental to the coherence of qubits and to the fidelities of operations relying on frequency excursions, such as flux-activated two-qubit gates. To assess their impact, we perform swap spectroscopy on 92 frequency-tunable qubits and quantify the spectral density of these strongly coupled modes. We show that the frequency configuration of the defects is rearranged by warming up the sample to room temperature, whereas the total number of defects on a processor tends to remain constant. We then explore methods for fabricating qubits with a reduced number of strongly coupled defect modes by systematically measuring their spectral density for decreasing Josephson junction dimensions and for various surface cleaning methods. Our results provide insights into the properties of strongly coupled defect modes and show the benefits of minimizing Josephson junction dimensions to improve qubit properties.

Improved Parameter Targeting in {3D}-Integrated Superconducting Circuits through a Polymer Spacer Process

  1. Graham J. Norris,
  2. Laurent Michaud,
  3. David Pahl,
  4. Michael Kerschbaum,
  5. Christopher Eichler,
  6. Jean-Claude Besse,
  7. and Andreas Wallraff
Three-dimensional device integration facilitates the construction of superconducting quantum information processors with more than several tens of qubits by distributing elements such
as control wires, qubits, and resonators between multiple layers. The frequencies of resonators and qubits in flip-chip-bonded multi-chip modules depend on the details of their electromagnetic environment defined by the conductors and dielectrics in their vicinity. Accurate frequency targeting therefore requires precise control of the separation between chips and minimization of their relative tilt. Here, we describe a method to control the inter-chip separation by using polymer spacers. Compared to an identical process without spacers, we reduce the measured planarity error by a factor of 3.5, to a mean tilt of 76(35) μrad, and the deviation from the target inter-chip separation by a factor of ten, to a mean of 0.4(8) μm. We apply this process to coplanar waveguide resonator samples and observe chip-to-chip resonator frequency variations below 50 MHz (≈ 1 %). We measure internal quality factors of 5×105 at the single-photon level, suggesting that the added spacers are compatible with low-loss device fabrication.

Calibration of Drive Non-Linearity for Arbitrary-Angle Single-Qubit Gates Using Error Amplification

  1. Stefania Lazăr,
  2. Quentin Ficheux,
  3. Johannes Herrmann,
  4. Ants Remm,
  5. Nathan Lacroix,
  6. Christoph Hellings,
  7. Francois Swiadek,
  8. Dante Colao Zanuz,
  9. Graham J. Norris,
  10. Mohsen Bahrami Panah,
  11. Alexander Flasby,
  12. Michael Kerschbaum,
  13. Jean-Claude Besse,
  14. Christopher Eichler,
  15. and Andreas Wallraff
The ability to execute high-fidelity operations is crucial to scaling up quantum devices to large numbers of qubits. However, signal distortions originating from non-linear components
in the control lines can limit the performance of single-qubit gates. In this work, we use a measurement based on error amplification to characterize and correct the small single-qubit rotation errors originating from the non-linear scaling of the qubit drive rate with the amplitude of the programmed pulse. With our hardware, and for a 15-ns pulse, the rotation angles deviate by up to several degrees from a linear model. Using purity benchmarking, we find that control errors reach 2×10−4, which accounts for half of the total gate error. Using cross-entropy benchmarking, we demonstrate arbitrary-angle single-qubit gates with coherence-limited errors of 2×10−4 and leakage below 6×10−5. While the exact magnitude of these errors is specific to our setup, the presented method is applicable to any source of non-linearity. Our work shows that the non-linearity of qubit drive line components imposes a limit on the fidelity of single-qubit gates, independent of improvements in coherence times, circuit design, or leakage mitigation when not corrected for.

Realization of a Universal Quantum Gate Set for Itinerant Microwave Photons

  1. Kevin Reuer,
  2. Jean-Claude Besse,
  3. Lucien Wernli,
  4. Paul Magnard,
  5. Philipp Kurpiers,
  6. Graham J. Norris,
  7. Andreas Wallraff,
  8. and Christopher Eichler
Deterministic photon-photon gates enable the controlled generation of entanglement between mobile carriers of quantum information. Such gates have thus far been exclusively realized
in the optical domain and by relying on post-selection. Here, we present a non-post-selected, deterministic, photon-photon gate in the microwave frequency range realized using superconducting circuits. We emit photonic qubits from a source chip and route those qubits to a gate chip with which we realize a universal gate set by combining controlled absorption and re-emission with single-qubit gates and qubit-photon controlled-phase gates. We measure quantum process fidelities of 75% for single- and of 57% for two-qubit gates, limited mainly by radiation loss and decoherence. This universal gate set has a wide range of potential applications in superconducting quantum networks.

Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems

  1. Paul Magnard,
  2. Simon Storz,
  3. Philipp Kurpiers,
  4. Josua Schär,
  5. Fabian Marxer,
  6. Janis Luetolf,
  7. Jean-Claude Besse,
  8. Mihai Gabureac,
  9. Kevin Reuer,
  10. Abdulkadir Akin,
  11. Baptiste Royer,
  12. Alexandre Blais,
  13. and Andreas Wallraff
Superconducting circuits are a strong contender for realizing quantum computing systems, and are also successfully used to study quantum optics and hybrid quantum systems. However,
their cryogenic operation temperatures and the current lack of coherence-preserving microwave-to-optical conversion solutions have hindered the realization of superconducting quantum networks either spanning different cryogenics systems or larger distances. Here, we report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters. We transfer qubit states and generate entanglement on-demand with average transfer and target state fidelities of 85.8 % and 79.5 %, respectively, between the two nodes of this elementary network. Cryogenic microwave links do provide an opportunity to scale up systems for quantum computing and create local area quantum communication networks over length scales of at least tens of meters.

Implementation of Conditional-Phase Gates based on tunable ZZ-Interactions

  1. Michele C. Collodo,
  2. Johannes Herrmann,
  3. Nathan Lacroix,
  4. Christian Kraglund Andersen,
  5. Ants Remm,
  6. Stefania Lazar,
  7. Jean-Claude Besse,
  8. Theo Walter,
  9. Andreas Wallraff,
  10. and Christopher Eichler
High fidelity two-qubit gates exhibiting low crosstalk are essential building blocks for gate-based quantum information processing. In superconducting circuits two-qubit gates are typically
based either on RF-controlled interactions or on the in-situ tunability of qubit frequencies. Here, we present an alternative approach using a tunable cross-Kerr-type ZZ-interaction between two qubits, which we realize by a flux-tunable coupler element. We control the ZZ-coupling rate over three orders of magnitude to perform a rapid (38 ns), high-contrast, low leakage (0.14 %) conditional-phase CZ gate with a fidelity of 97.9 % without relying on the resonant interaction with a non-computational state. Furthermore, by exploiting the direct nature of the ZZ-coupling, we easily access the entire conditional-phase gate family by adjusting only a single control parameter.

Realizing a Deterministic Source of Multipartite-Entangled Photonic Qubits

  1. Jean-Claude Besse,
  2. Kevin Reuer,
  3. Michele C. Collodo,
  4. Arne Wulff,
  5. Lucien Wernli,
  6. Adrian Copetudo,
  7. Daniel Malz,
  8. Paul Magnard,
  9. Abdulkadir Akin,
  10. Mihai Gabureac,
  11. Graham J. Norris,
  12. J. Ignacio Cirac,
  13. Andreas Wallraff,
  14. and Christopher Eichler
Sources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlled
experimental setting. While multi-mode entangled states of radiation have been generated in various platforms, all previous experiments are either probabilistic or restricted to generate specific types of states with a moderate entanglement length. Here, we demonstrate the fully deterministic generation of purely photonic entangled states such as the cluster, GHZ, and W state by sequentially emitting microwave photons from a controlled auxiliary system into a waveguide. We tomographically reconstruct the entire quantum many-body state for up to N=4 photonic modes and infer the quantum state for even larger N from process tomography. We estimate that localizable entanglement persists over a distance of approximately ten photonic qubits, outperforming any previous deterministic scheme.

Primary thermometry of propagating microwaves in the quantum regime

  1. Marco Scigliuzzo,
  2. Andreas Bengtsson,
  3. Jean-Claude Besse,
  4. Andreas Wallraff,
  5. Per Delsing,
  6. and Simone Gasparinetti
The ability to control and measure the temperature of propagating microwave modes down to very low temperatures is indispensable for quantum information processing, and may open opportunities
for studies of heat transport at the nanoscale, also in the quantum regime. Here we propose and experimentally demonstrate primary thermometry of propagating microwaves using a transmon-type superconducting circuit. Our device operates continuously, with a sensitivity down to 4×10−4 photons/Hz−−−√ and a bandwidth of 40 MHz. We measure the thermal occupation of the modes of a highly attenuated coaxial cable in a range of 0.001 to 0.4 thermal photons, corresponding to a temperature range from 35 mK to 210 mK at a frequency around 5 GHz. To increase the radiation temperature in a controlled fashion, we either inject calibrated, wideband digital noise, or heat the device and its environment. This thermometry scheme can find applications in benchmarking and characterization of cryogenic microwave setups, temperature measurements in hybrid quantum systems, and quantum thermodynamics.