Performance of Superconducting Resonators Suspended on SiN Membranes

  1. Trevor Chistolini,
  2. Kyunghoon Lee,
  3. Archan Banerjee,
  4. Mohammed Alghadeer,
  5. Christian Jünger,
  6. M. Virginia P. Altoé,
  7. Chengyu Song,
  8. Sudi Chen,
  9. Feng Wang,
  10. David I. Santiago,
  11. and Irfan Siddiqi
Correlated errors in superconducting circuits due to nonequilibrium quasiparticles are a notable concern in efforts to achieve fault tolerant quantum computing. The propagation of quasiparticles
causing these correlated errors can potentially be mediated by phonons in the substrate. Therefore, methods that decouple devices from the substrate are possible solutions, such as isolating devices atop SiN membranes. In this work, we validate the compatibility of SiN membrane technology with high quality superconducting circuits, adding the technique to the community’s fabrication toolbox. We do so by fabricating superconducting coplanar waveguide resonators entirely atop a thin (∼110 nm) SiN layer, where the bulk Si originally supporting it has been etched away, achieving a suspended membrane where the shortest length to its thickness yields an aspect ratio of approximately 7.4×103. We compare these membrane resonators to on-substrate resonators on the same chip, finding similar internal quality factors ∼105 at single photon levels. Furthermore, we confirm that these membranes do not adversely affect the resonator thermalization rate. With these important benchmarks validated, this technique can be extended to qubits.

High-Coherence Kerr-cat qubit in 2D architecture

  1. Ahmed Hajr,
  2. Bingcheng Qing,
  3. Ke Wang,
  4. Gerwin Koolstra,
  5. Zahra Pedramrazi,
  6. Ziqi Kang,
  7. Larry Chen,
  8. Long B. Nguyen,
  9. Christian Junger,
  10. Noah Goss,
  11. Irwin Huang,
  12. Bibek Bhandari,
  13. Nicholas E. Frattini,
  14. Shruti Puri,
  15. Justin Dressel,
  16. Andrew Jordan,
  17. David Santiago,
  18. and Irfan Siddiqi
The Kerr-cat qubit is a bosonic qubit in which multi-photon Schrodinger cat states are stabilized by applying a two-photon drive to an oscillator with a Kerr nonlinearity. The suppressed
bit-flip rate with increasing cat size makes this qubit a promising candidate to implement quantum error correction codes tailored for noise-biased qubits. However, achieving strong light-matter interactions necessary for stabilizing and controlling this qubit has traditionally required strong microwave drives that heat the qubit and degrade its performance. In contrast, increasing the coupling to the drive port removes the need for strong drives at the expense of large Purcell decay. By integrating an effective band-block filter on-chip, we overcome this trade-off and realize a Kerr-cat qubit in a scalable 2D superconducting circuit with high coherence. This filter provides 30 dB of isolation at the qubit frequency with negligible attenuation at the frequencies required for stabilization and readout. We experimentally demonstrate quantum non-demolition readout fidelity of 99.6% for a cat with 8 photons. Also, to have high-fidelity universal control over this qubit, we combine fast Rabi oscillations with a new demonstration of the X(90) gate through phase modulation of the stabilization drive. Finally, the lifetime in this architecture is examined as a function of the cat size of up to 10 photons in the oscillator achieving a bit-flip time higher than 1 ms and only a linear decrease in the phase-flip time, in good agreement with the theoretical analysis of the circuit. Our qubit shows promise as a building block for fault-tolerant quantum processors with a small footprint.

Efficient Generation of Multi-partite Entanglement between Non-local Superconducting Qubits using Classical Feedback

  1. Akel Hashim,
  2. Ming Yuan,
  3. Pranav Gokhale,
  4. Larry Chen,
  5. Christian Jünger,
  6. Neelay Fruitwala,
  7. Yilun Xu,
  8. Gang Huang,
  9. Liang Jiang,
  10. and Irfan Siddiqi
Quantum entanglement is one of the primary features which distinguishes quantum computers from classical computers. In gate-based quantum computing, the creation of entangled states
or the distribution of entanglement across a quantum processor often requires circuit depths which grow with the number of entangled qubits. However, in teleportation-based quantum computing, one can deterministically generate entangled states with a circuit depth that is constant in the number of qubits, provided that one has access to an entangled resource state, the ability to perform mid-circuit measurements, and can rapidly transmit classical information. In this work, aided by fast classical FPGA-based control hardware with a feedback latency of only 150 ns, we explore the utility of teleportation-based protocols for generating non-local, multi-partite entanglement between superconducting qubits. First, we demonstrate well-known protocols for generating Greenberger-Horne-Zeilinger (GHZ) states and non-local CNOT gates in constant depth. Next, we utilize both protocols for implementing an unbounded fan-out (i.e., controlled-NOT-NOT) gate in constant depth between three non-local qubits. Finally, we demonstrate deterministic state teleportation and entanglement swapping between qubits on opposite side of our quantum processor.

Empowering high-dimensional quantum computing by traversing the dual bosonic ladder

  1. Long B. Nguyen,
  2. Noah Goss,
  3. Karthik Siva,
  4. Yosep Kim,
  5. Ed Younis,
  6. Bingcheng Qing,
  7. Akel Hashim,
  8. David I. Santiago,
  9. and Irfan Siddiqi
High-dimensional quantum information processing has emerged as a promising avenue to transcend hardware limitations and advance the frontiers of quantum technologies. Harnessing the
untapped potential of the so-called qudits necessitates the development of quantum protocols beyond the established qubit methodologies. Here, we present a robust, hardware-efficient, and extensible approach for operating multidimensional solid-state systems using Raman-assisted two-photon interactions. To demonstrate its efficacy, we construct a set of multi-qubit operations, realize highly entangled multidimensional states including atomic squeezed states and Schrödinger cat states, and implement programmable entanglement distribution along a qudit array. Our work illuminates the quantum electrodynamics of strongly driven multi-qudit systems and provides the experimental foundation for the future development of high-dimensional quantum applications.

Dynamically Reconfigurable Photon Exchange in a Superconducting Quantum Processor

  1. Brian Marinelli,
  2. Jie Luo,
  3. Hengjiang Ren,
  4. Bethany M. Niedzielski,
  5. David K. Kim,
  6. Rabindra Das,
  7. Mollie Schwartz,
  8. David I. Santiago,
  9. and Irfan Siddiqi
Realizing the advantages of quantum computation requires access to the full Hilbert space of states of many quantum bits (qubits). Thus, large-scale quantum computation faces the challenge
of efficiently generating entanglement between many qubits. In systems with a limited number of direct connections between qubits, entanglement between non-nearest neighbor qubits is generated by a series of nearest neighbor gates, which exponentially suppresses the resulting fidelity. Here we propose and demonstrate a novel, on-chip photon exchange network. This photonic network is embedded in a superconducting quantum processor (QPU) to implement an arbitrarily reconfigurable qubit connectivity graph. We show long-range qubit-qubit interactions between qubits with a maximum spatial separation of 9.2 cm along a meandered bus resonator and achieve photon exchange rates up to gqq=2π×0.9 MHz. These experimental demonstrations provide a foundation to realize highly connected, reconfigurable quantum photonic networks and opens a new path towards modular quantum computing.

Quantum Computation of Frequency-Domain Molecular Response Properties Using a Three-Qubit iToffoli Gate

  1. Shi-Ning Sun,
  2. Brian Marinelli,
  3. Jin Ming Koh,
  4. Yosep Kim,
  5. Long B. Nguyen,
  6. Larry Chen,
  7. John Mark Kreikebaum,
  8. David I. Santiago,
  9. Irfan Siddiqi,
  10. and Austin J. Minnich
The quantum computation of molecular response properties on near-term quantum hardware is a topic of significant interest. While computing time-domain response properties is in principle
straightforward due to the natural ability of quantum computers to simulate unitary time evolution, circuit depth limitations restrict the maximum time that can be simulated and hence the extraction of frequency-domain properties. Computing properties directly in the frequency domain is therefore desirable, but the circuits require large depth when the typical hardware gate set consisting of single- and two-qubit gates is used. Here, we report the experimental quantum computation of the response properties of diatomic molecules directly in the frequency domain using a three-qubit iToffoli gate, enabling a reduction in circuit depth by a factor of two. We show that the molecular properties obtained with the iToffoli gate exhibit comparable or better agreement with theory than those obtained with the native CZ gates. Our work is among the first demonstrations of the practical usage of a native multi-qubit gate in quantum simulation, with diverse potential applications to the simulation of quantum many-body systems on near-term digital quantum computers.

Programmable Heisenberg interactions between Floquet qubits

  1. Long B. Nguyen,
  2. Yosep Kim,
  3. Akel Hashim,
  4. Noah Goss,
  5. Brian Marinelli,
  6. Bibek Bhandari,
  7. Debmalya Das,
  8. Ravi K. Naik,
  9. John Mark Kreikebaum,
  10. Andrew N. Jordan,
  11. David I. Santiago,
  12. and Irfan Siddiqi
The fundamental trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, many emerging
quantum architectures are designed to achieve high coherence at the expense of having fixed spectra and consequently limited types of controllable interactions. Here, by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model is on one hand the basis for many-body quantum simulation of spin systems, and on the other hand the primitive for an expressive quantum gate set. To illustrate the robustness and versatility of our Floquet protocol, we tailor the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ, and SWAP gates with estimated fidelities of 99.32(3)%, 99.72(2)%, and 98.93(5)%, respectively. In addition, we implement a Heisenberg interaction between higher energy levels and employ it to construct a three-qubit CCZ gate with a fidelity of 96.18(5)%. Importantly, the protocol is applicable to various fixed-frequency high-coherence platforms, thereby unlocking a suite of essential interactions for high-performance quantum information processing. From a broader perspective, our work provides compelling avenues for future exploration of quantum electrodynamics and optimal control using the Floquet framework.

High-Fidelity Qutrit Entangling Gates for Superconducting Circuits

  1. Noah Goss,
  2. Alexis Morvan,
  3. Brian Marinelli,
  4. Bradley K. Mitchell,
  5. Long B. Nguyen,
  6. Ravi K. Naik,
  7. Larry Chen,
  8. Christian Jünger,
  9. John Mark Kreikebaum,
  10. David I. Santiago,
  11. Joel J. Wallman,
  12. and Irfan Siddiqi
Ternary quantum information processing in superconducting devices poses a promising alternative to its more popular binary counterpart through larger, more connected computational spaces
and proposed advantages in quantum simulation and error correction. Although generally operated as qubits, transmons have readily addressable higher levels, making them natural candidates for operation as quantum three-level systems (qutrits). Recent works in transmon devices have realized high fidelity single qutrit operation. Nonetheless, effectively engineering a high-fidelity two-qutrit entanglement remains a central challenge for realizing qutrit processing in a transmon device. In this work, we apply the differential AC Stark shift to implement a flexible, microwave-activated, and dynamic cross-Kerr entanglement between two fixed-frequency transmon qutrits, expanding on work performed for the ZZ interaction with transmon qubits. We then use this interaction to engineer efficient, high-fidelity qutrit CZ† and CZ gates, with estimated process fidelities of 97.3(1)% and 95.2(3)% respectively, a significant step forward for operating qutrits on a multi-transmon device.

Effects of Laser-Annealing on Fixed-Frequency Superconducting Qubits

  1. Hyunseong Kim,
  2. Christian Jünger,
  3. Alexis Morvan,
  4. Edward S. Barnard,
  5. William P. Livingston,
  6. M. Virginia P. Altoé,
  7. Yosep Kim,
  8. Chengyu Song,
  9. Larry Chen,
  10. John Mark Kreikebaum,
  11. D. Frank Ogletree,
  12. David I. Santiago,
  13. and Irfan Siddiqi
As superconducting quantum processors increase in complexity, techniques to overcome constraints on frequency crowding are needed. The recently developed method of laser-annealing provides
an effective post-fabrication method to adjust the frequency of superconducting qubits. Here, we present an automated laser-annealing apparatus based on conventional microscopy components and demonstrate preservation of highly coherent transmons. In one case, we observe a two-fold increase in coherence after laser-annealing and perform noise spectroscopy on this qubit to investigate the change in defect features, in particular two-level system defects. Finally, we present a local heating model as well as demonstrate aging stability for laser-annealing on the wafer scale. Our work constitutes an important first step towards both understanding the underlying physical mechanism and scaling up laser-annealing of superconducting qubits.

Optimizing frequency allocation for fixed-frequency superconducting quantum processors

  1. Alexis Morvan,
  2. Larry Chen,
  3. Jeffrey M. Larson,
  4. David I. Santiago,
  5. and Irfan Siddiqi
Fixed-frequency superconducting quantum processors are one of the most mature quantum computing architectures with high-coherence qubits and low-complexity controls. However, high-fidelity
multi-qubit gates pose tight requirements on individual qubit frequencies in these processors and their fabrication suffers from the large dispersion in the fabrication of Josephson junctions. It is inefficient to make a large number of processors because degeneracy in frequencies can degrade the processors‘ quality. In this article, we propose an optimization scheme based on mixed-integer programming to maximize the fabrication yield of quantum processors. We study traditional qubit and qutrit (three-level) architectures with cross-resonance interaction processors. We compare these architectures to a differential AC-Stark shift based on entanglement gates and show that our approach greatly improves the fabrication yield and also increases the scalability of these devices. Our approach is general and can be adapted to problems where one must avoid specific frequency collisions.