High-Coherence Kerr-cat qubit in 2D architecture

  1. Ahmed Hajr,
  2. Bingcheng Qing,
  3. Ke Wang,
  4. Gerwin Koolstra,
  5. Zahra Pedramrazi,
  6. Ziqi Kang,
  7. Larry Chen,
  8. Long B. Nguyen,
  9. Christian Junger,
  10. Noah Goss,
  11. Irwin Huang,
  12. Bibek Bhandari,
  13. Nicholas E. Frattini,
  14. Shruti Puri,
  15. Justin Dressel,
  16. Andrew Jordan,
  17. David Santiago,
  18. and Irfan Siddiqi
The Kerr-cat qubit is a bosonic qubit in which multi-photon Schrodinger cat states are stabilized by applying a two-photon drive to an oscillator with a Kerr nonlinearity. The suppressed
bit-flip rate with increasing cat size makes this qubit a promising candidate to implement quantum error correction codes tailored for noise-biased qubits. However, achieving strong light-matter interactions necessary for stabilizing and controlling this qubit has traditionally required strong microwave drives that heat the qubit and degrade its performance. In contrast, increasing the coupling to the drive port removes the need for strong drives at the expense of large Purcell decay. By integrating an effective band-block filter on-chip, we overcome this trade-off and realize a Kerr-cat qubit in a scalable 2D superconducting circuit with high coherence. This filter provides 30 dB of isolation at the qubit frequency with negligible attenuation at the frequencies required for stabilization and readout. We experimentally demonstrate quantum non-demolition readout fidelity of 99.6% for a cat with 8 photons. Also, to have high-fidelity universal control over this qubit, we combine fast Rabi oscillations with a new demonstration of the X(90) gate through phase modulation of the stabilization drive. Finally, the lifetime in this architecture is examined as a function of the cat size of up to 10 photons in the oscillator achieving a bit-flip time higher than 1 ms and only a linear decrease in the phase-flip time, in good agreement with the theoretical analysis of the circuit. Our qubit shows promise as a building block for fault-tolerant quantum processors with a small footprint.

Efficient Generation of Multi-partite Entanglement between Non-local Superconducting Qubits using Classical Feedback

  1. Akel Hashim,
  2. Ming Yuan,
  3. Pranav Gokhale,
  4. Larry Chen,
  5. Christian Jünger,
  6. Neelay Fruitwala,
  7. Yilun Xu,
  8. Gang Huang,
  9. Liang Jiang,
  10. and Irfan Siddiqi
Quantum entanglement is one of the primary features which distinguishes quantum computers from classical computers. In gate-based quantum computing, the creation of entangled states
or the distribution of entanglement across a quantum processor often requires circuit depths which grow with the number of entangled qubits. However, in teleportation-based quantum computing, one can deterministically generate entangled states with a circuit depth that is constant in the number of qubits, provided that one has access to an entangled resource state, the ability to perform mid-circuit measurements, and can rapidly transmit classical information. In this work, aided by fast classical FPGA-based control hardware with a feedback latency of only 150 ns, we explore the utility of teleportation-based protocols for generating non-local, multi-partite entanglement between superconducting qubits. First, we demonstrate well-known protocols for generating Greenberger-Horne-Zeilinger (GHZ) states and non-local CNOT gates in constant depth. Next, we utilize both protocols for implementing an unbounded fan-out (i.e., controlled-NOT-NOT) gate in constant depth between three non-local qubits. Finally, we demonstrate deterministic state teleportation and entanglement swapping between qubits on opposite side of our quantum processor.

High-Fidelity Qutrit Entangling Gates for Superconducting Circuits

  1. Noah Goss,
  2. Alexis Morvan,
  3. Brian Marinelli,
  4. Bradley K. Mitchell,
  5. Long B. Nguyen,
  6. Ravi K. Naik,
  7. Larry Chen,
  8. Christian Jünger,
  9. John Mark Kreikebaum,
  10. David I. Santiago,
  11. Joel J. Wallman,
  12. and Irfan Siddiqi
Ternary quantum information processing in superconducting devices poses a promising alternative to its more popular binary counterpart through larger, more connected computational spaces
and proposed advantages in quantum simulation and error correction. Although generally operated as qubits, transmons have readily addressable higher levels, making them natural candidates for operation as quantum three-level systems (qutrits). Recent works in transmon devices have realized high fidelity single qutrit operation. Nonetheless, effectively engineering a high-fidelity two-qutrit entanglement remains a central challenge for realizing qutrit processing in a transmon device. In this work, we apply the differential AC Stark shift to implement a flexible, microwave-activated, and dynamic cross-Kerr entanglement between two fixed-frequency transmon qutrits, expanding on work performed for the ZZ interaction with transmon qubits. We then use this interaction to engineer efficient, high-fidelity qutrit CZ† and CZ gates, with estimated process fidelities of 97.3(1)% and 95.2(3)% respectively, a significant step forward for operating qutrits on a multi-transmon device.

Effects of Laser-Annealing on Fixed-Frequency Superconducting Qubits

  1. Hyunseong Kim,
  2. Christian Jünger,
  3. Alexis Morvan,
  4. Edward S. Barnard,
  5. William P. Livingston,
  6. M. Virginia P. Altoé,
  7. Yosep Kim,
  8. Chengyu Song,
  9. Larry Chen,
  10. John Mark Kreikebaum,
  11. D. Frank Ogletree,
  12. David I. Santiago,
  13. and Irfan Siddiqi
As superconducting quantum processors increase in complexity, techniques to overcome constraints on frequency crowding are needed. The recently developed method of laser-annealing provides
an effective post-fabrication method to adjust the frequency of superconducting qubits. Here, we present an automated laser-annealing apparatus based on conventional microscopy components and demonstrate preservation of highly coherent transmons. In one case, we observe a two-fold increase in coherence after laser-annealing and perform noise spectroscopy on this qubit to investigate the change in defect features, in particular two-level system defects. Finally, we present a local heating model as well as demonstrate aging stability for laser-annealing on the wafer scale. Our work constitutes an important first step towards both understanding the underlying physical mechanism and scaling up laser-annealing of superconducting qubits.

Scalable High-Performance Fluxonium Quantum Processor

  1. Long B. Nguyen,
  2. Gerwin Koolstra,
  3. Yosep Kim,
  4. Alexis Morvan,
  5. Trevor Chistolini,
  6. Shraddha Singh,
  7. Konstantin N. Nesterov,
  8. Christian Jünger,
  9. Larry Chen,
  10. Zahra Pedramrazi,
  11. Bradley K. Mitchell,
  12. John Mark Kreikebaum,
  13. Shruti Puri,
  14. David I. Santiago,
  15. and Irfan Siddiqi Singh
The technological development of hardware heading toward universal fault-tolerant quantum computation requires a large-scale processing unit with high performance. While fluxonium qubits
are promising with high coherence and large anharmonicity, their scalability has not been systematically explored. In this work, we propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk, reduced design complexity, improved operational efficiency, high-fidelity gates, and resistance to parameter fluctuations. In this architecture, the qubits are readout dispersively using individual resonators connected to a common bus and manipulated via combined on-chip RF and DC control lines, both of which can be designed to have low crosstalk. A multi-path coupling approach enables exchange interactions between the high-coherence computational states and at the same time suppresses the spurious static ZZ rate, leading to fast and high-fidelity entangling gates. We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz. Our study on frequency crowding indicates high fabrication yield for quantum processors consisting of over thousands of qubits. In addition, we estimate low resource overhead to suppress logical error rate using the XZZX surface code. These results promise a scalable quantum architecture with high performance for the pursuit of universal quantum computation.

High-fidelity iToffoli gate for fixed-frequency superconducting qubits

  1. Yosep Kim,
  2. Alexis Morvan,
  3. Long B. Nguyen,
  4. Ravi K. Naik,
  5. Christian Jünger,
  6. Larry Chen,
  7. John Mark Kreikebaum,
  8. David I. Santiago,
  9. and Irfan Siddiqi
The development of noisy intermediate-scale quantum (NISQ) devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping NISQ
devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited due to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity iToffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The iToffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates which provide more efficient gate synthesis than the Toffoli and Toffoli gates. Our work not only brings a high-fidelity iToffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.