Entangling interactions between artificial atoms mediated by a multimode left-handed superconducting ring resonator

  1. T. McBroom-Carroll,
  2. A. Schlabes,
  3. X. Xu,
  4. J. Ku,
  5. B. Cole,
  6. S. Indrajeet,
  7. M. D. LaHaye,
  8. M. H. Ansari,
  9. and B. L. T. Plourde
Superconducting metamaterial transmission lines implemented with lumped circuit elements can exhibit left-handed dispersion, where the group and phase velocity have opposite sign, in
a frequency range relevant for superconducting artificial atoms. Forming such a metamaterial transmission line into a ring and coupling it to qubits at different points around the ring results in a multimode bus resonator with a compact footprint. Using flux-tunable qubits, we characterize and theoretically model the variation in the coupling strength between the two qubits and each of the ring resonator modes. Although the qubits have negligible direct coupling between them, their interactions with the multimode ring resonator result in both a transverse exchange coupling and a higher order ZZ interaction between the qubits. As we vary the detuning between the qubits and their frequency relative to the ring resonator modes, we observe significant variations in both of these inter-qubit interactions, including zero crossings and changes of sign. The ability to modulate interaction terms such as the ZZ scale between zero and large values for small changes in qubit frequency provides a promising pathway for implementing entangling gates in a system capable of hosting many qubits.

Coupling a Superconducting Qubit to a Left-Handed Metamaterial Resonator

  1. S. Indrajeet,
  2. H. Wang,
  3. M. D. Hutchings,
  4. B.G. Taketani,
  5. Frank K. Wilhelm,
  6. M. D. LaHaye,
  7. and B. L. T. Plourde
Metamaterial resonant structures made from arrays of superconducting lumped circuit elements can exhibit microwave mode spectra with left-handed dispersion, resulting in a high density
of modes in the same frequency range where superconducting qubits are typically operated, as well as a bandgap at lower frequencies that extends down to dc. Using this novel regime for multi-mode circuit quantum electrodynamics, we have performed a series of measurements of such a superconducting metamaterial resonator coupled to a flux-tunable transmon qubit. Through microwave measurements of the metamaterial, we have observed the coupling of the qubit to each of the modes that it passes through. Using a separate readout resonator, we have probed the qubit dispersively and characterized the qubit energy relaxation as a function of frequency, which is strongly affected by the Purcell effect in the presence of the dense mode spectrum. Additionally, we have investigated the ac Stark shift of the qubit as the photon number in the various metamaterial modes is varied. The ability to tailor the dense mode spectrum through the choice of circuit parameters and manipulate the photonic state of the metamaterial through interactions with qubits makes this a promising platform for analog quantum simulation and quantum memories.

Mode Structure in Superconducting Metamaterial Transmission Line Resonators

  1. H. Wang,
  2. A.P. Zhuravel,
  3. S. Indrajeet,
  4. Bruno G. Taketani,
  5. M. D. Hutchings,
  6. Y. Hao,
  7. F. Rouxinol,
  8. F.K. Wilhelm,
  9. M. LaHaye,
  10. A. V. Ustinov,
  11. and B. L. T. Plourde
Superconducting metamaterials are a promising resource for quantum information science. In the context of circuit QED, they provide a means to engineer on-chip, novel dispersion relations
and a band structure that could ultimately be utilized for generating complex entangled states of quantum circuitry, for quantum reservoir engineering, and as an element for quantum simulation architectures. Here we report on the development and measurement at millikelvin temperatures of a particular type of circuit metamaterial resonator composed of planar superconducting lumped-element reactances in the form of a discrete left-handed transmission line (LHTL). We discuss the details of the design, fabrication, and circuit properties of this system. As well, we provide an extensive characterization of the dense mode spectrum in these metamaterial resonators, which we conducted using both microwave transmission measurements and laser scanning microscopy (LSM). Results are observed to be in good quantitative agreement with numerical simulations and also an analytical model based upon current-voltage relationships for a discrete transmission line. In particular, we demonstrate that the metamaterial mode frequencies, spatial profiles of current and charge densities, and damping due to external loading can be readily modeled and understood, making this system a promising tool for future use in quantum circuit applications and for studies of complex quantum systems.