Bosonic quantum error correction codes in superconducting quantum circuits

  1. W. Cai,
  2. Y. Ma,
  3. W. Wang,
  4. C.-L. Zou,
  5. and L. Sun
Quantum information is vulnerable to environmental noise and experimental imperfections, hindering the reliability of practical quantum information processors. Therefore, quantum error
correction (QEC) that can protect quantum information against noise is vital for universal and scalable quantum computation. Among many different experimental platforms, superconducting quantum circuits and bosonic encodings in superconducting microwave modes are appealing for their unprecedented potential in QEC. During the last few years, bosonic QEC is demonstrated to reach the break-even point, i.e. the lifetime of a logical qubit is enhanced to exceed that of any individual components composing the experimental system. Beyond that, universal gate sets and fault-tolerant operations on the bosonic codes are also realized, pushing quantum information processing towards the QEC era. In this article, we review the recent progress of the bosonic codes, including the Gottesman-Kitaev-Preskill codes, cat codes, and binomial codes, and discuss the opportunities of bosonic codes in various quantum applications, ranging from fault-tolerant quantum computation to quantum metrology. We also summarize the challenges associated with the bosonic codes and provide an outlook for the potential research directions in the long terms.

Elimination of unwanted qubit interactions for parametric exchange two-qubit gates in a tunable coupling circuit

  1. X. Han,
  2. T. Cai,
  3. X. Li,
  4. Y. Wu,
  5. Y. Ma,
  6. J. Wang,
  7. H. Zhang,
  8. Yipu Song,
  9. and Luming Duan
We experimentally demonstrate a simple-design tunable coupler, achieving a continuous tunability for eliminating unwanted qubit interactions. We implement two-qubit iSWAP gate by applying
a fast-flux bias modulation pulse on the coupler to turn on parametric exchange interaction between computational qubits. Aiming to fully investigate error sources on the two-qubit gates, we perform quantum process tomography measurements and numerical simulations as varying static ZZ coupling strength. Our results reveal that the change in the two-qubit gate error is mainly attributed to unwanted high-frequency oscillation error terms, while the dynamic ZZ coupling parasitising in two-qubit gate operation may also contribute to the dependency of the gate fidelity. This approach, which has not yet been previously explored, provides a guiding principle to improve gate fidelity of parametric iSWAP gate by the elimination of unwanted qubit interactions. This controllable interaction, together with the parametric architecture by using modulation techniques, is desirable for crosstalk free multiqubit quantum circuits and quantum simulation applications.

A tunable coupler for suppressing adjacent superconducting qubit coupling

  1. X. Li,
  2. T. Cai,
  3. H. Yan,
  4. Z. Wang,
  5. X. Pan,
  6. Y. Ma,
  7. W. Cai,
  8. J. Han,
  9. Z. Hua,
  10. X. Han,
  11. Y. Wu,
  12. H. Zhang,
  13. H. Wang,
  14. Yipu Song,
  15. Luming Duan,
  16. and Luyan Sun
Controllable interaction between superconducting qubits is desirable for large-scale quantum computation and simulation. Here, based on a theoretical proposal by Yan et al. [Phys. Rev.
Appl. 10, 054061 (2018)] we experimentally demonstrate a simply-designed and flux-controlled tunable coupler with continuous tunability by adjusting the coupler frequency, which can completely turn off adjacent superconducting qubit coupling. Utilizing the tunable interaction between two qubits via the coupler, we implement a controlled-phase (CZ) gate by tuning one qubit frequency into and out of the usual operating point while dynamically keeping the qubit-qubit coupling off. This scheme not only efficiently suppresses the leakage out of the computational subspace but also allows for the acquired two-qubit phase being geometric at the operating point only where the coupling is on. We achieve an average CZ gate fidelity of 98.3%, which is dominantly limited by qubit decoherence. The demonstrated tunable coupler provides a desirable tool to suppress adjacent qubit coupling and is suitable for large-scale quantum computation and simulation.

Witnessing quantum resource conversion within deterministic quantum computation using one pure superconducting qubit

  1. W. Wang,
  2. B. Yadin,
  3. Y. Ma,
  4. J. Ma,
  5. Y. Xu,
  6. L. Hu,
  7. H. Wang,
  8. Y. P. Song,
  9. Mile Gu,
  10. and L. Sun
Deterministic quantum computation with one qubit (DQC1) is iconic in highlighting that exponential quantum speedup may be achieved with negligible entanglement. Its discovery catalyzed
heated study of general quantum resources, and various conjectures regarding their role in DQC1’s performance advantage. Coherence and discord are prominent candidates, respectively characterizing non-classicality within localized and correlated systems. Here we realize DQC1 within a superconducting system, engineered such that the dynamics of coherence and discord can be tracked throughout its execution. We experimentally confirm that DQC1 acts as a resource converter, consuming coherence to generate discord during its operation. Our results highlight superconducting circuits as a promising platform for both realizing DQC1 and related algorithms, and experimentally characterizing resource dynamics within quantum protocols.

Perfect remote quantum state transfer in a superconducting qubit chain with parametrically tunable couplings

  1. X. Li,
  2. Y. Ma,
  3. J. Han,
  4. Tao Chen,
  5. Y. Xu,
  6. W. Cai,
  7. H. Wang,
  8. Y. P. Song,
  9. Zheng-Yuan Xue,
  10. Zhang-qi Yin,
  11. and Luyan Sun
Faithfully transferring quantum state is essential for quantum information processing. Here, we demonstrate a fast (in 84~ns) and high-fidelity (99.2%) quantum state transfer in a
chain of four superconducting qubits with nearest-neighbor coupling. This transfer relies on full control of the effective couplings between neighboring qubits, which is realized only by parametrically modulating the qubits without increasing circuit complexity. Once the couplings between qubits fulfill specific ratio, a perfect quantum state transfer can be achieved in a single step, therefore robust to noise and accumulation of experimental errors. This quantum state transfer can be extended to a larger qubit chain and thus adds a desirable tool for future quantum information processing. The demonstrated flexibility of the coupling tunability is suitable for quantum simulation of many-body physics which requires different configurations of qubit couplings.