Previous studies of photon-assisted tunneling through normal-metal-insulator-superconductor junctions have exhibited potential for providing a convenient tool to control the dissipationof quantum-electric circuits in-situ. However, the current literature on such a quantum-circuit refrigerator (QCR) does not present a detailed description for the charge dynamics of the tunneling processes or the phase coherence of the open quantum system. Here we derive a master equation describing both quantum-electric and charge degrees of freedom, and discover that typical experimental parameters of low temperature and yet lower charging energy yield a separation of time scales for the charge and quantum dynamics. Consequently, the minor effect of the different charge states can be taken into account by averaging over the charge distribution. We also consider applying an ac voltage to the tunnel junction, which enables control of the decay rate of a superconducting qubit over four orders of magnitude by changing the drive amplitude; we find an order-of-magnitude drop in the qubit excitation in 40 ns and a residual reset infidelity below 10−4. Furthermore, for the normal island we consider the case of charging energy and single-particle level spacing large compared to the superconducting gap, i.e., a quantum dot. Although the decay rates arising from such a dot QCR appear low for use in qubit reset, the device can provide effective negative damping (gain) to the coupled microwave resonator. The Fano factor of such a millikelvin microwave source may be smaller than unity, with the latter value being reached close to the maximum attainable power.
As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum informationprocessing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor fifty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware.
Extending the qubit coherence times is a crucial task in building quantum information processing devices. In the three-dimensional cavity implementations of circuit QED, the coherenceof superconducting qubits was improved dramatically due to cutting the losses associated with the photon emission. Next frontier in improving the coherence includes the mitigation of the adverse effects of superconducting quasiparticles. In these lectures, we review the basics of the quasiparticles dynamics, their interaction with the qubit degree of freedom, their contribution to the qubit relaxation rates, and approaches to control their effect.
Out of equilibrium quasiparticles (QPs) are one of the main sources of decoherence in superconducting quantum circuits, and are particularly detrimental in devices with high kineticinductance, such as high impedance resonators, qubits, and detectors. Despite significant progress in the understanding of QP dynamics, pinpointing their origin and decreasing their density remain outstanding tasks. The cyclic process of recombination and generation of QPs implies the exchange of phonons between the superconducting thin film and the underlying substrate. Reducing the number of substrate phonons with frequencies exceeding the spectral gap of the superconductor should result in a reduction of QPs. Indeed, we demonstrate that surrounding high impedance resonators made of granular aluminum (grAl) with lower gapped thin film aluminum islands increases the internal quality factors of the resonators in the single photon regime, suppresses the noise, and reduces the rate of observed QP bursts. The aluminum islands are positioned far enough from the resonators to be electromagnetically decoupled, thus not changing the resonator frequency, nor the loading. We therefore attribute the improvements observed in grAl resonators to phonon trapping at frequencies close to the spectral gap of aluminum, well below the grAl gap.
Quasiparticles represent an intrinsic source of perturbation for superconducting qubits, leading to both dissipation of the qubit energy and dephasing. Recently, it has been shown thatnormal-metal traps may efficiently reduce the quasiparticle population and improve the qubit lifetime, provided the trap surpasses a certain characteristic size. Moreover, while the trap itself introduces new relaxation mechanisms, they are not expected to harm state-of-the-art transmon qubits under the condition that the traps are not placed too close to extremal positions where electric fields are high. Here, we study a different type of trap, realized through gap engineering. We find that gap-engineered traps relax the remaining constraints imposed on normal metal traps. Firstly, the characteristic trap size, above which the trap is efficient, is reduced with respect to normal metal traps, such that here, strong traps are possible in smaller devices. Secondly, the losses caused by the trap are now greatly reduced, providing more flexibility in trap placement. The latter point is of particular importance, since for efficient protection from quasiparticles, the traps ideally should be placed close to the active parts of the qubit device, where electric fields are typically high.
Quasiparticles are an intrinsic source of relaxation and decoherence for superconducting qubits. Recent works have shown that normal-metal traps may be used to evacuate quasiparticles,and potentially improve the qubit life time. Here, we investigate how far the normal metals themselves may introduce qubit relaxation. We identify the ohmic losses inside the normal metal and the tunnelling current through the normal metal-superconductor interface as the relevant relaxation mechanisms. We show that the ohmic loss contribution depends strongly on the device and trap geometry, as a result of the inhomogeneous electric fields in the qubit. The correction of the quality factor due to the tunnelling current on the other hand is highly sensitive to the nonequilibrium distribution function of the quasiparticles. Overall, we show that even when choosing less than optimal parameters, the presence of normal-metal traps does not affect the quality factor of state-of-the-art qubits.
Superconducting high kinetic inductance elements constitute a valuable resource for quantum circuit design and millimeter-wave detection. Granular aluminum (GrAl) in the superconductingregime is a particularly interesting material since it has already shown a kinetic inductance in the range of nH/◻ and its deposition is compatible with conventional Al/AlOx/Al Josephson junction fabrication. We characterize microwave resonators fabricated from GrAl with a room temperature resistivity of 4×103μΩ⋅cm, which is a factor of 3 below the superconductor to insulator transition, showing a kinetic inductance fraction close to unity. The measured internal quality factors are on the order of Qi=105 in the single photon regime, and we demonstrate that non-equilibrium quasiparticles (QP) constitute the dominant loss mechanism. We extract QP relaxation times in the range of 1 s and we observe QP bursts every ∼20 s. The current level of coherence of GrAl resonators makes them attractive for integration in quantum devices, while it also evidences the need to reduce the density of non-equilibrium QPs.
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneouscoherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. In this work, we investigate a complementary, stochastic approach to reducing errors: instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. We report a 70% reduction in the quasiparticle density, resulting in a threefold enhancement in qubit relaxation times, and a comparable reduction in coherence variability.
Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always beentaken to completely shield these circuits from external magnetic field to protect the integrity of superconductivity. Surprisingly, here we show vortices can dramatically improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we directly demonstrate the power-law decay characteristics of the canonical quasiparticle recombination process, and show quantization of quasiparticle trapping rate due to individual vortices. Each vortex in our aluminium film shows a quasiparticle „trapping power“ of 0.067±0.005 cm2/s, enough to dominate over the vanishingly weak recombination in a modern transmon qubit. These results highlight the prominent role of quasiparticle trapping in future development of quantum circuits, and provide a powerful characterization tool along the way.
As the energy relaxation time of superconducting qubits steadily improves, non-equilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevantlimit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum non-demolition projective measurements within a time interval much shorter than T1, using a quantum limited amplifier (Josephson Parametric Converter). The quantum jumps statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in magnetic field.