Reducing the impact of radioactivity on quantum circuits in a deep-underground facility

  1. Laura Cardani,
  2. Francesco Valenti,
  3. Nicola Casali,
  4. Gianluigi Catelani,
  5. Thibault Charpentier,
  6. Massimiliano Clemenza,
  7. Ivan Colantoni,
  8. Angelo Cruciani,
  9. Luca Gironi,
  10. Lukas Grünhaupt,
  11. Daria Gusenkova,
  12. Fabio Henriques,
  13. Marc Lagoin,
  14. Maria Martinez,
  15. Giorgio Pettinari,
  16. Claudia Rusconi,
  17. Oliver Sander,
  18. Alexey V. Ustinov,
  19. Marc Weber,
  20. Wolfgang Wernsdorfer,
  21. Marco Vignati,
  22. Stefano Pirro,
  23. and Ioan M. Pop
As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information
processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor fifty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware.