Creation of Quantum Error Correcting Codes in the Ultrastrong Coupling Regime

  1. T. H. Kyaw,
  2. D. A. Herrera-Martı,
  3. E. Solano,
  4. G. Romero,
  5. and L. C. Kwek
We propose to construct large quantum graph codes by means of superconducting circuits working at the ultrastrong coupling regime. In this physical scenario, we are able to create a
cluster state between any pair of qubits within a fraction of a nanosecond. To exemplify our proposal, creation of the five-qubit and Steane codes are demonstrated. We also provide optimal operating conditions with which the graph codes can be realized with state-of-the-art superconducting technologies.

Digital Quantum Rabi and Dicke Models in Superconducting Circuits

  1. A. Mezzacapo,
  2. U. Las Heras,
  3. J. S. Pedernales,
  4. L. DiCarlo,
  5. E. Solano,
  6. and L. Lamata
We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those
which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.

Tunable and Switchable Coupling Between Two Superconducting Resonators

  1. A. Baust,
  2. E. Hoffmann,
  3. M. Haeberlein,
  4. M. J. Schwarz,
  5. P. Eder,
  6. E. P. Menzel,
  7. K. Fedorov,
  8. J. Goetz,
  9. F. Wulschner,
  10. E. Xie,
  11. L. Zhong,
  12. F. Quijandria,
  13. B. Peropadre,
  14. D. Zueco,
  15. J.J. García-Ripoll,
  16. E. Solano,
  17. F. Deppe,
  18. A. Marx,
  19. and R. Gross
We realize a device allowing for tunable and switchable coupling between two superconducting resonators mediated by an artificial atom. For the latter, we utilize a persistent current
flux qubit. We characterize the tunable and switchable coupling in frequency and time domain and find that the coupling between the relevant modes can be varied in a controlled way. Specifically, the coupling can be tuned by adjusting the flux through the qubit loop or by saturating the qubit. Our time domain measurements allow us to find parameter regimes for optimal switch performance with respect to qubit drive power and the dynamic range of the resonator input power

Scalable quantum random-access memory with superconducting circuits

  1. T. H. Kyaw,
  2. S. Felicetti,
  3. G. Romero,
  4. E. Solano,
  5. and L. C. Kwek
Quantum networks play an important role in the implementation of quantum computing, communication and metrology. Circuit quantum electrodynamics (QED), consisting of superconducting
artificial atoms coupled to on-chip resonators, provides a prime candidate to implement these networks due to their controllability and scalability. Furthermore, recent advances have also pushed the technology to the ultrastrong coupling (USC) regime of light-matter interaction, where the qubit-cavity coupling strength reaches a considerable fraction of the cavity frequency. Here, we propose the implementation of a scalable quantum random-access memory (QRAM) architecture based on a circuit QED network, whose edges operate in the USC regime. In particular, we study the storage and retrieval of quantum information in a parity-protected quantum memory and propose quantum interconnects in experimentally feasible schemes. Our proposal may pave the way for novel quantum memory applications ranging from entangled-state cryptography, teleportation, purification, fault-tolerant quantum computation, to quantum simulations.

Fermion-fermion scattering with superconducting circuits

  1. L. García-Álvarez,
  2. J. Casanova,
  3. A. Mezzacapo,
  4. I. L. Egusquiza,
  5. L. Lamata,
  6. G. Romero,
  7. and E. Solano
Quantum field theories (QFTs) are among the deepest descriptions of nature. In this sense, different computing approaches have been developed, as Feynman diagrams or lattice gauge theories.
In general, the numerical simulations of QFTs are computationally hard, with the processing time growing exponentially with the system size. Nevertheless, a quantum simulator could provide an efficient way to emulate these theories in polynomial time. Here, we propose the quantum simulation of fermionic field modes interacting via a continuum of bosonic modes with superconducting circuits, which are among the most advanced quantum technologies in terms of quantum control and scalability. An important feature of superconducting devices is that, unlike other quantum platforms, they offer naturally a strong coupling of qubits to a continuum of bosonic modes. Therefore, this system is a specially suited platform to realize quantum simulations of scattering processes involving interacting fermionic and bosonic quantum field theories, where access to the continuum of modes is required.

Many-Body Interactions with Tunable-Coupling Transmon Qubits

  1. A. Mezzacapo,
  2. L. Lamata,
  3. S. Filipp,
  4. and E. Solano
The efficient implementation of many-body interactions in superconducting circuits allows for the realization of multipartite entanglement and topological codes, as well as the efficient
simulation of highly-correlated fermionic systems. We propose the engineering of fast multiqubit interactions with tunable transmon-resonator couplings. This dynamics is obtained by the modulation of magnetic fluxes threading SQUID loops embedded in the transmon devices. We consider the feasibility of the proposed implementation in a realistic scenario and discuss potential applications.

Dynamical Casimir effect entangles artificial atoms

  1. S. Felicetti,
  2. M. Sanz,
  3. L. Lamata,
  4. G. Romero,
  5. G. Johansson,
  6. P. Delsing,
  7. and E. Solano
The phenomenon of quantum fluctuations, consisting in virtual particles emerging from vacuum, is central to understanding important effects in nature – for instance, the Lamb
shift of atomic spectra and the anomalous magnetic moment of the electron. It was also suggested that a mirror undergoing relativistic motion could convert virtual into real photons. This phenomenon, denominated dynamical Casimir effect (DCE), has been observed in recent experiments with superconducting circuits. Here, we show that the physics underlying the DCE may generate multipartite quantum correlations. To achieve it, we propose a circuit quantum electrodynamics (cQED) scenario involving superconducting quantum interference devices (SQUIDs), cavities, and superconducting qubits, also called artificial atoms. Our results predict the generation of highly entangled states for two and three superconducting qubits in different geometric configurations with realistic parameters. This proposal paves the way for a scalable method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.

Digital Quantum Simulation of Spin Systems in Superconducting Circuits

  1. U. Las Heras,
  2. A. Mezzacapo,
  3. L. Lamata,
  4. S. Filipp,
  5. A. Wallraff,
  6. and E. Solano
We propose the implementation of a digital quantum simulator for prototypical spin models in a circuit quantum electrodynamics architecture. We consider the feasibility of the quantum
simulation of Heisenberg and frustrated Ising models in transmon qubits coupled to coplanar waveguide microwave resonators. Furthermore, we analyze the time evolution of these models and compare the ideal spin dynamics with a realistic version of the proposed quantum simulator. Finally, we discuss the key steps for developing the toolbox of digital quantum simulators in superconducting circuits.

Dual-Path Methods for Propagating Quantum Microwaves

  1. R. Di Candia,
  2. E. P. Menzel,
  3. L. Zhong,
  4. F. Deppe,
  5. A. Marx,
  6. R. Gross,
  7. and E. Solano
We study quantum state tomography, entanglement detection, and channel noise reconstruction of propagating quantum microwaves via dual-path methods. The presented schemes make use of
the following key elements: propagation channels, beam splitters, linear amplifiers, and field quadrature detectors. Remarkably, our methods are tolerant to the ubiquitous noise added to the signals by phase-insensitive microwave amplifiers. Furthermore, we analyze our techniques with numerical examples and experimental data. Our methods provide key toolbox components that may pave the way towards quantum microwave teleportation and communication protocols.

Squeezing with a flux-driven Josephson parametric amplifier

  1. L. Zhong,
  2. E. P. Menzel,
  3. R. Di Candia,
  4. P. Eder,
  5. M. Ihmig,
  6. A. Baust,
  7. M. Haeberlein,
  8. E. Hoffmann,
  9. K. Inomata,
  10. T. Yamamoto,
  11. Y. Nakamura,
  12. E. Solano,
  13. F. Deppe,
  14. A. Marx,
  15. and R. Gross
Josephson parametric amplifiers (JPA) are promising devices for applications in circuit quantum electrodynamics (QED) and for studies on propagating quantum microwaves because of their
good noise performance. In this work, we present a systematic characterization of a flux-driven JPA at millikelvin temperatures. In particular, we study in detail its squeezing properties by two different detection techniques. With the homodyne setup, we observe squeezing of vacuum fluctuations by superposing signal and idler bands. For a quantitative analysis we apply dual-path cross-correlation techniques to reconstruct the Wigner functions of various squeezed vacuum and thermal states. At 10 dB signal gain, we find 4.9+-0.2 dB squeezing below vacuum. In addition, we discuss the physics behind squeezed coherent microwave fields. Finally, we analyze the JPA noise temperature in the degenerate mode and find a value smaller than the standard quantum limit for phase-insensitive amplifiers.