Broken selection rule in the quantum Rabi model

  1. P. Forn-Díaz,
  2. G. Romero,
  3. C. J. P. M. Harmans,
  4. E. Solano,
  5. and J. E. Mooij
We report the spectroscopic observation of a resonant transition that breaks a selection rule in the quantum Rabi model, implemented using an LC resonator and a superconducting qubit.
The eigenstates of the system consist of a superposition of bare qubit-oscillator states with a relative sign. In the limit of low qubit-oscillator coupling strength, the matrix element between excited eigenstates of different sign is very small in presence of an oscillator drive, establishing a sign-preserving selection rule. Here, our qubit-resonator system operates in the ultrastrong coupling regime, where the coupling strength is 10% of the resonator frequency, allowing sign-changing transitions to be activated and, therefore, detected. This work shows that sign-changing transitions are an unambiguous, distinctive signature of systems operating in the ultrastrong coupling regime of the quantum Rabi model. These results pave the way to further studies of sign-preserving selection rules in multiqubit and multiphoton models.

Tunable coupling of transmission-line microwave resonators mediated by an rf SQUID

  1. F. Wulschner,
  2. J. Goetz,
  3. F. R. Koessel,
  4. E. Hoffmann,
  5. A. Baust,
  6. P. Eder,
  7. M. Fischer,
  8. M. Haeberlein,
  9. M. J. Schwarz,
  10. M. Pernpeintner,
  11. E. Xie,
  12. L. Zhong,
  13. C. W. Zollitsch,
  14. B. Peropadre,
  15. J.J. García-Ripoll,
  16. E. Solano,
  17. K. Fedorov,
  18. E. P. Menzel,
  19. F. Deppe,
  20. A. Marx,
  21. and R. Gross
We realize tunable coupling between two superconducting transmission line resonators. The coupling is mediated by a non-hysteretic rf SQUID acting as a flux-tunable mutual inductance
between the resonators. From the mode distance observed in spectroscopy experiments, we derive a coupling strength ranging between -320MHz and 37 MHz. In the case where the coupling strength is about zero, the microwave power cross transmission between the two resonators can be reduced by almost four orders of magnitude compared to the case where the coupling is switched on. In addition, we observe parametric amplification by applying a suitable additional drive tone.

Quantum Simulation of Spin Chains Coupled to Bosonic Modes with Superconducting Circuits

  1. U. Las Heras,
  2. L. García-Álvarez,
  3. A. Mezzacapo,
  4. E. Solano,
  5. and L. Lamata
We propose the implementation of a digital quantum simulation of spin chains coupled to bosonic field modes in superconducting circuits. Gates with high fidelities allows one to simulate
a variety of Ising magnetic pairing interactions with transverse field, Tavis-Cummings interaction between spins and a bosonic mode, and a spin model with three-body terms. We analyze the feasibility of the implementation in realistic circuit quantum electrodynamics setups, where the interactions are either realized via capacitive couplings or mediated by microwave resonators.

Quantum teleportation of propagating quantum microwaves

  1. R. Di Candia,
  2. K. G. Fedorov,
  3. L. Zhong,
  4. S. Felicetti,
  5. E. P. Menzel,
  6. M. Sanz,
  7. F. Deppe,
  8. A. Marx,
  9. R. Gross,
  10. and E. Solano
Propagating quantum microwaves have been proposed and successfully implemented to generate entanglement, thereby establishing a promising platform for the realisation of a quantum communication
channel. However, the implementation of quantum teleportation with photons in the microwave regime is still absent. At the same time, recent developments in the field show that this key protocol could be feasible with current technology, which would pave the way to boost the field of microwave quantum communication. Here, we discuss the feasibility of a possible implementation of microwave quantum teleportation in a realistic scenario with losses. Furthermore, we propose how to implement quantum repeaters in the microwave regime without using photodetection, a key prerequisite to achieve long distance entanglement distribution.

Non-Abelian Lattice Gauge Theories in Superconducting Circuits

  1. A. Mezzacapo,
  2. E. Rico,
  3. C. Sabín,
  4. I. L. Egusquiza,
  5. L. Lamata,
  6. and E. Solano
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance
of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.

Relativistic Motion with Superconducting Qubits

  1. S. Felicetti,
  2. C. Sabín,
  3. I. Fuentes,
  4. L. Lamata,
  5. G. Romero,
  6. and E. Solano
We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This
allows us to propose a realistic experiment to detect microwave photons coming from simulated acceleration radiation. Moreover, by combining this technique with the dynamical Casimir physics, we enhance the toolbox for studying relativistic phenomena in quantum field theory with superconducting circuits.

Digital quantum simulation of spin models with circuit quantum electrodynamics

  1. Y. Salathé,
  2. M. Mondal,
  3. M. Oppliger,
  4. J. Heinsoo,
  5. P. Kurpiers,
  6. A. Potočnik,
  7. A. Mezzacapo,
  8. U. Las Heras,
  9. L. Lamata,
  10. E. Solano,
  11. S. Filipp,
  12. and A. Wallraff
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional
computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources which are polynomial in the number of spins and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

Digital quantum simulation of fermionic models with a superconducting circuit

  1. R. Barends,
  2. L. Lamata,
  3. J. Kelly,
  4. L. García-Álvarez,
  5. A. G. Fowler,
  6. A. Megrant,
  7. E. Jeffrey,
  8. T. C. White,
  9. D. Sank,
  10. J. Y. Mutus,
  11. B. Campbell,
  12. Yu Chen,
  13. Z. Chen,
  14. B. Chiaro,
  15. A. Dunsworth,
  16. I.-C. Hoi,
  17. C. Neill,
  18. P. J. J. O'Malley,
  19. C. Quintana,
  20. P. Roushan,
  21. A. Vainsencher,
  22. J. Wenner,
  23. E. Solano,
  24. and John M. Martinis
Simulating quantum physics with a device which itself is quantum mechanical, a notion Richard Feynman originated, would be an unparallelled computational resource. However, the universal
quantum simulation of fermionic systems is daunting due to their particle statistics, and Feynman left as an open question whether it could be done, because of the need for non-local control. Here, we implement fermionic interactions with digital techniques in a superconducting circuit. Focusing on the Hubbard model, we perform time evolution with constant interactions as well as a dynamic phase transition with up to four fermionic modes encoded in four qubits. The implemented digital approach is universal and allows for the efficient simulation of fermions in arbitrary spatial dimensions. We use in excess of 300 single-qubit and two-qubit gates, and reach global fidelities which are limited by gate errors. This demonstration highlights the feasibility of the digital approach and opens a viable route towards analog-digital quantum simulation of interacting fermions and bosons in large-scale solid state systems.

Ultrastrong coupling in two-resonator circuit QED

  1. A. Baust,
  2. E. Hoffmann,
  3. M. Haeberlein,
  4. M. J. Schwarz,
  5. P. Eder,
  6. J. Goetz,
  7. F. Wulschner,
  8. E. Xie,
  9. L. Zhong,
  10. F. Quijandria,
  11. D. Zueco,
  12. J.J. García-Ripoll,
  13. L. Garcia-Alvarez,
  14. G. Romero,
  15. E. Solano,
  16. K. G. Fedorov,
  17. E. P. Menzel,
  18. F. Deppe,
  19. A. Marx,
  20. and R. Gross
We report on ultrastrong coupling between a superconducting flux qubit and a resonant mode of a system comprised of two superconducting coplanar stripline resonators coupled galvanically
to the qubit. With a coupling strength as high as 17% of the mode frequency, exceeding that of previous circuit quantum electrodynamics experiments, we observe a pronounced Bloch-Siegert shift. The spectroscopic response of our multimode system reveals a clear breakdown of the Jaynes-Cummings model. In contrast to earlier experiments, the high coupling strength is achieved without making use of an additional inductance provided by a Josephson junction.

Fermionic Models with Superconducting Circuits

  1. U. Las Heras,
  2. L. García-Álvarez,
  3. A. Mezzacapo,
  4. E. Solano,
  5. and L. Lamata
We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition,
and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups.