Scalable quantum random-access memory with superconducting circuits

  1. T. H. Kyaw,
  2. S. Felicetti,
  3. G. Romero,
  4. E. Solano,
  5. and L. C. Kwek
Quantum networks play an important role in the implementation of quantum computing, communication and metrology. Circuit quantum electrodynamics (QED), consisting of superconducting artificial atoms coupled to on-chip resonators, provides a prime candidate to implement these networks due to their controllability and scalability. Furthermore, recent advances have also pushed the technology to the ultrastrong coupling (USC) regime of light-matter interaction, where the qubit-cavity coupling strength reaches a considerable fraction of the cavity frequency. Here, we propose the implementation of a scalable quantum random-access memory (QRAM) architecture based on a circuit QED network, whose edges operate in the USC regime. In particular, we study the storage and retrieval of quantum information in a parity-protected quantum memory and propose quantum interconnects in experimentally feasible schemes. Our proposal may pave the way for novel quantum memory applications ranging from entangled-state cryptography, teleportation, purification, fault-tolerant quantum computation, to quantum simulations.

leave comment