Engineering Framework for Optimizing Superconducting Qubit Designs

  1. Fei Yan,
  2. Youngkyu Sung,
  3. Philip Krantz,
  4. Archana Kamal,
  5. David K. Kim,
  6. Jonilyn L. Yoder,
  7. Terry P. Orlando,
  8. Simon Gustavsson,
  9. and William D. Oliver
Superconducting quantum technologies require qubit systems whose properties meet several often conflicting requirements, such as long coherence times and high anharmonicity. Here, we
provide an engineering framework based on a generalized superconducting qubit model in the flux regime, which abstracts multiple circuit design parameters and thereby supports design optimization across multiple qubit properties. We experimentally investigate a special parameter regime which has both high anharmonicity (∼1GHz) and long quantum coherence times (T1=40−80μs and T2Echo=2T1).

Multi-level Quantum Noise Spectroscopy

  1. Youngkyu Sung,
  2. Antti Vepsäläinen,
  3. Jochen Braumüller,
  4. Fei Yan,
  5. Joel I-Jan Wang,
  6. Morten Kjaergaard,
  7. Roni Winik,
  8. Philip Krantz,
  9. Andreas Bengtsson,
  10. Alexander J. Melville,
  11. Bethany M. Niedzielski,
  12. Mollie E. Schwartz,
  13. David K. Kim,
  14. Jonilyn L. Yoder,
  15. Terry P. Orlando,
  16. Simon Gustavsson,
  17. and William D. Oliver
System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise
affecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.

Impact of ionizing radiation on superconducting qubit coherence

  1. Antti Vepsäläinen,
  2. Amir H. Karamlou,
  3. John L. Orrell,
  4. Akshunna S. Dogra,
  5. Ben Loer,
  6. Francisca Vasconcelos,
  7. David K. Kim,
  8. Alexander J. Melville,
  9. Bethany M. Niedzielski,
  10. Jonilyn L. Yoder,
  11. Simon Gustavsson,
  12. Joseph A. Formaggio,
  13. Brent A. VanDevender,
  14. and William D. Oliver
The practical viability of any qubit technology stands on long coherence times and high-fidelity operations, with the superconducting qubit modality being a leading example. However,
superconducting qubit coherence is impacted by broken Cooper pairs, referred to as quasiparticles, with a density that is empirically observed to be orders of magnitude greater than the value predicted for thermal equilibrium by the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. Previous work has shown that infrared photons significantly increase the quasiparticle density, yet even in the best isolated systems, it still remains higher than expected, suggesting that another generation mechanism exists. In this Letter, we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference, leading to an elevated quasiparticle density that would ultimately limit superconducting qubits of the type measured here to coherence times in the millisecond regime. We further demonstrate that introducing radiation shielding reduces the flux of ionizing radiation and positively correlates with increased coherence time. Albeit a small effect for today’s qubits, reducing or otherwise mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.

Solid-state qubits integrated with superconducting through-silicon vias

  1. Donna-Ruth W. Yost,
  2. Mollie E. Schwartz,
  3. Justin Mallek,
  4. Danna Rosenberg,
  5. Corey Stull,
  6. Jonilyn L. Yoder,
  7. Greg Calusine,
  8. Matt Cook,
  9. Rabi Das,
  10. Alexandra L. Day,
  11. Evan B. Golden,
  12. David K. Kim,
  13. Alexander Melville,
  14. Bethany M. Niedzielski,
  15. Wayne Woods,
  16. Andrew J. Kerman,
  17. and Willam D. Oliver
As superconducting qubit circuits become more complex, addressing a large array of qubits becomes a challenging engineering problem. Dense arrays of qubits benefit from, and may require,
access via the third dimension to alleviate interconnect crowding. Through-silicon vias (TSVs) represent a promising approach to three-dimensional (3D) integration in superconducting qubit arrays — provided they are compact enough to support densely-packed qubit systems without compromising qubit performance or low-loss signal and control routing. In this work, we demonstrate the integration of superconducting, high-aspect ratio TSVs — 10 μm wide by 20 μm long by 200 μm deep — with superconducting qubits. We utilize TSVs for baseband control and high-fidelity microwave readout of qubits using a two-chip, bump-bonded architecture. We also validate the fabrication of qubits directly upon the surface of a TSV-integrated chip. These key 3D integration milestones pave the way for the control and readout of high-density superconducting qubit arrays using superconducting TSVs.

Silicon Hard-Stop Spacers for 3D Integration of Superconducting Qubits

  1. Bethany M. Niedzielski,
  2. David K. Kim,
  3. Mollie E. Schwartz,
  4. Danna Rosenberg,
  5. Greg Calusine,
  6. Rabi Das,
  7. Alexander J. Melville,
  8. Jason Plant,
  9. Livia Racz,
  10. Jonilyn L. Yoder,
  11. Donna Ruth-Yost,
  12. and William D. Oliver
As designs for superconducting qubits become more complex, 3D integration of two or more vertically bonded chips will become necessary to enable increased density and connectivity.
Precise control of the spacing between these chips is required for accurate prediction of circuit performance. In this paper, we demonstrate an improvement in the planarity of bonded superconducting qubit chips while retaining device performance by utilizing hard-stop silicon spacer posts. These silicon spacers are defined by etching several microns into a silicon substrate and are compatible with 3D-integrated qubit fabrication. This includes fabrication of Josephson junctions, superconducting air-bridge crossovers, underbump metallization and indium bumps. To qualify the integrated process, we demonstrate high-quality factor resonators on the etched surface and measure qubit coherence (T1, T2,echo > 40 {\mu}s) in the presence of silicon posts as near as 350 {\mu}m to the qubit.

Determining interface dielectric losses in superconducting coplanar waveguide resonators

  1. Wayne Woods,
  2. Greg Calusine,
  3. Alexander Melville,
  4. Arjan Sevi,
  5. Evan Golden,
  6. David K. Kim,
  7. Danna Rosenberg,
  8. Jonilyn L. Yoder,
  9. and William D. Oliver
Superconducting quantum computing architectures comprise resonators and qubits that experience energy loss due to two-level systems (TLS) in bulk and interfacial dielectrics. Understanding
these losses is critical to improving performance in superconducting circuits. In this work, we present a method for quantifying the TLS losses of different bulk and interfacial dielectrics present in superconducting coplanar waveguide (CPW) resonators. By combining statistical characterization of sets of specifically designed CPW resonators on isotropically etched silicon substrates with detailed electromagnetic modeling, we determine the separate loss contributions from individual material interfaces and bulk dielectrics. This technique for analyzing interfacial TLS losses can be used to guide targeted improvements to qubits, resonators, and their superconducting fabrication processes.

Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators

  1. Greg Calusine,
  2. Alexander Melville,
  3. Wayne Woods,
  4. Rabindra Das,
  5. Corey Stull,
  6. Vlad Bolkhovsky,
  7. Danielle Braje,
  8. David Hover,
  9. David K. Kim,
  10. Xhovalin Miloshi,
  11. Danna Rosenberg,
  12. Arjan Sevi,
  13. Jonilyn L. Yoder,
  14. Eric A. Dauler,
  15. and William D. Oliver
Improving the performance of superconducting qubits and resonators generally results from a combination of materials and fabrication process improvements and design modifications that
reduce device sensitivity to residual losses. One instance of this approach is to use trenching into the device substrate in combination with superconductors and dielectrics with low intrinsic losses to improve quality factors and coherence times. Here we demonstrate titanium nitride coplanar waveguide resonators with mean quality factors exceeding two million and controlled trenching reaching 2.2 μm into the silicon substrate. Additionally, we measure sets of resonators with a range of sizes and trench depths and compare these results with finite-element simulations to demonstrate quantitative agreement with a model of interface dielectric loss. We then apply this analysis to determine the extent to which trenching can improve resonator performance.

Coherent coupled qubits for quantum annealing

  1. Steven J. Weber,
  2. Gabriel O. Samach,
  3. David Hover,
  4. Simon Gustavsson,
  5. David K. Kim,
  6. Danna Rosenberg,
  7. Adam P. Sears,
  8. Fei Yan,
  9. Jonilyn L. Yoder,
  10. William D. Oliver,
  11. and Andrew J. Kerman
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux
qubits with short coherence times, limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach, using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (∼50 nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.