Rapid high-fidelity multiplexed readout of superconducting qubits

  1. Johannes Heinsoo,
  2. Christian Kraglund Andersen,
  3. Ants Remm,
  4. Sebastian Krinner,
  5. Theodore Walter,
  6. Yves Salathé,
  7. Simone Gasperinetti,
  8. Jean-Claude Besse,
  9. Anton Potočnik,
  10. Christopher Eichler,
  11. and Andreas Wallraff
The duration and fidelity of qubit readout is a critical factor for applications in quantum information processing as it limits the fidelity of algorithms which reuse qubits after measurement
or apply feedback based on the measurement result. Here we present fast multiplexed readout of five qubits in a single 1.2 GHz wide readout channel. Using a readout pulse length of 80 ns and populating readout resonators for less than 250 ns we find an average correct assignment probability for the five measured qubits to be 97%. The differences between the individual readout errors and those found when measuring the qubits simultaneously are within 1%. We employ individual Purcell filters for each readout resonator to suppress off-resonant driving, which we characterize by the dephasing imposed on unintentionally measured qubits. We expect the here presented readout scheme to become particularly useful for the selective readout of individual qubits in multi-qubit quantum processors.

Fast and Unconditional All-Microwave Reset of a Superconducting Qubit

  1. Paul Magnard,
  2. Philipp Kurpiers,
  3. Baptiste Royer,
  4. Theo Walter,
  5. Jean-Claude Besse,
  6. Simone Gasparinetti,
  7. Marek Pechal,
  8. Johannes Heinsoo,
  9. Simon Storz,
  10. Alexandre Blais,
  11. and Andreas Wallraff
Active qubit reset is a key operation in many quantum algorithms, and particularly in error correction codes. Here, we experimentally demonstrate a reset scheme of a three level transmon
artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state with 0.2% residual excitation in less than 500ns. Our protocol is of practical interest as it has no requirements on the architecture, beyond those for fast and efficient single-shot readout of the transmon, and does not require feedback.

Deterministic Quantum State Transfer and Generation of Remote Entanglement using Microwave Photons

  1. Philipp Kurpiers,
  2. Paul Magnard,
  3. Theo Walter,
  4. Baptiste Royer,
  5. Marek Pechal,
  6. Johannes Heinsoo,
  7. Yves Salathé,
  8. Abdulkadir Akin,
  9. Simon Storz,
  10. Jean-Claude Besse,
  11. Simone Gasparinetti,
  12. Alexandre Blais,
  13. and Andreas Wallraff
Sharing information coherently between nodes of a quantum network is at the foundation of distributed quantum information processing. In this scheme, the computation is divided into
subroutines and performed on several smaller quantum registers connected by classical and quantum channels. A direct quantum channel, which connects nodes deterministically, rather than probabilistically, is advantageous for fault-tolerant quantum computation because it reduces the threshold requirements and can achieve larger entanglement rates. Here, we implement deterministic state transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits constitute a universal quantum node capable of sending, receiving, storing, and processing quantum information. Our implementation is based on an all-microwave cavity-assisted Raman process which entangles or transfers the qubit state of a transmon-type artificial atom to a time-symmetric itinerant single photon. We transfer qubit states at a rate of 50kHz using the emitted photons which are absorbed at the receiving node with a probability of 98.1±0.1% achieving a transfer process fidelity of 80.02±0.07%. We also prepare on demand remote entanglement with a fidelity as high as 78.9±0.1%. Our results are in excellent agreement with numerical simulations based on a master equation description of the system. This deterministic quantum protocol has the potential to be used as a backbone of surface code quantum error correction across different nodes of a cryogenic network to realize large-scale fault-tolerant quantum computation in the circuit quantum electrodynamic architecture.

Single-Shot Quantum Non-Demolition Detection of Itinerant Microwave Photons

  1. Jean-Claude Besse,
  2. Simone Gasparinetti,
  3. Michele C. Collodo,
  4. Theo Walter,
  5. Philipp Kurpiers,
  6. Marek Pechal,
  7. Christopher Eichler,
  8. and Andreas Wallraff
Single-photon detection is an essential component in many experiments in quantum optics, but remains challenging in the microwave domain. We realize a quantum non-demolition detector
for propagating microwave photons and characterize its performance using a single-photon source. To this aim we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in single shot, we reach an internal photon detection fidelity of 71%, limited by the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum non-demolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

Studying Light-Harvesting Models with Superconducting Circuits

  1. Anton Potočnik,
  2. Arno Bargerbos,
  3. Florian A. Y. N. Schröder,
  4. Saeed A. Khan,
  5. Michele C. Collodo,
  6. Simone Gasparinetti,
  7. Yves Salathé,
  8. Celestino Creatore,
  9. Christopher Eichler,
  10. Hakan E. Türeci,
  11. Alex W. Chin,
  12. and Andreas Wallraff
The process of photosynthesis, the main source of energy in the animate world, converts sunlight into chemical energy. The surprisingly high efficiency of this process is believed to
be enabled by an intricate interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a new approach for studying photosynthetic models based on superconducting quantum circuits. In particular, we demonstrate the unprecedented versatility and control of our method in an engineered three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 105. With this system we show that the excitation transport between quantum coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.

Realization of a quantum random generator certified with the Kochen-Specker theorem

  1. Anatoly Kulikov,
  2. Markus Jerger,
  3. Anton Potočnik,
  4. Andreas Wallraff,
  5. and Arkady Fedorov
Random numbers are required for a variety of applications from secure communications to Monte-Carlo simulation. Yet randomness is an asymptotic property and no output string generated
by a physical device can be strictly proven to be random. We report an experimental realization of a quantum random number generator (QRNG) with randomness certified by quantum contextuality and the Kochen-Specker theorem. The certification is not performed in a device-independent way but through a rigorous theoretical proof of each outcome being value-indefinite even in the presence of experimental imperfections. The analysis of the generated data confirms the incomputable nature of our QRNG.

Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

  1. Yves Salathé,
  2. Philipp Kurpiers,
  3. Thomas Karg,
  4. Christian Lang,
  5. Christian Kraglund Andersen,
  6. Abdulkadir Akin,
  7. Christopher Eichler,
  8. and Andreas Wallraff
Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows to stabilize
states, correct errors and to realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field programmable gate array (FPGA) based digital signal processing system capable of real-time quadrature demodulation, determination of the qubit state and generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

Correlations and entanglement of microwave photons emitted in a cascade decay

  1. Simone Gasparinetti,
  2. Marek Pechal,
  3. Jean-Claude Besse,
  4. Mintu Mondal,
  5. Christopher Eichler,
  6. and Andreas Wallraff
An excited emitter decays by radiating a photon into a quantized mode of the electromagnetic field, a process known as spontaneous emission. If the emitter is driven to a higher excited
state, it radiates multiple photons in a cascade decay. Atomic and biexciton cascades have been exploited as sources of polarization-entangled photon pairs. Because the photons are emitted sequentially, their intensities are strongly correlated in time, as measured in a double-beam coincidence experiment. Perhaps less intuitively, their phases can also be correlated, provided a single emitter is deterministically prepared into a superposition state, and the emitted radiation is detected in a phase-sensitive manner and with high efficiency. Here we have met these requirements by using a superconducting artificial atom, coherently driven to its second-excited state and decaying into a well-defined microwave mode. Our results highlight the coherent nature of cascade decay and demonstrate a novel protocol to generate entanglement between itinerant field modes.

Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

  1. Anna Stockklauser,
  2. Pasquale Scarlino,
  3. Jonne Koski,
  4. Simone Gasparinetti,
  5. Christian Kraglund Andersen,
  6. Christian Reichl,
  7. Werner Wegscheider,
  8. Thomas Ihn,
  9. Klaus Ensslin,
  10. and Andreas Wallraff
The strong coupling limit of cavity quantum electrodynamics (QED) implies the capability of a matter-like quantum system to coherently transform an individual excitation into a single
photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work we demonstrate strong coupling between the charge degree of freedom in a gate-detuned GaAs double quantum dot (DQD) and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices (SQUIDs). In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238 MHz at a resonator linewidth κ/2π=12 MHz and a DQD charge qubit dephasing rate of γ2/2π=80 MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit based cavity QED for quantum information processing in semiconductor nano-structures.

A Superconducting Quantum Simulator for Topological Order and the Toric Code

  1. Mahdi Sameti,
  2. Anton Potocnik,
  3. Dan E. Browne,
  4. Andreas Wallraff,
  5. and Michael J. Hartmann
Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based
on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations and prospects for protecting stored quantum information against errors. Here we show that the Hamiltonian of the central model of this class of systems, the Toric Code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via Superconducting Quantum Interference Devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along non-contractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single qubit operations allow to create and propagate elementary excitations of the Toric Code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories.