Variational quantum algorithms are believed to be promising for solving computationally hard problems and are often comprised of repeated layers of quantum gates. An example thereofis the quantum approximate optimization algorithm (QAOA), an approach to solve combinatorial optimization problems on noisy intermediate-scale quantum (NISQ) systems. Gaining computational power from QAOA critically relies on the mitigation of errors during the execution of the algorithm, which for coherence-limited operations is achievable by reducing the gate count. Here, we demonstrate an improvement of up to a factor of 3 in algorithmic performance as measured by the success probability, by implementing a continuous hardware-efficient gate set using superconducting quantum circuits. This gate set allows us to perform the phase separation step in QAOA with a single physical gate for each pair of qubits instead of decomposing it into two CZ-gates and single-qubit gates. With this reduced number of physical gates, which scales with the number of layers employed in the algorithm, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances mapped onto three and seven qubits, using up to a total of 399 operations and up to 9 layers. Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
The ability to control and measure the temperature of propagating microwave modes down to very low temperatures is indispensable for quantum information processing, and may open opportunitiesfor studies of heat transport at the nanoscale, also in the quantum regime. Here we propose and experimentally demonstrate primary thermometry of propagating microwaves using a transmon-type superconducting circuit. Our device operates continuously, with a sensitivity down to 4×10−4 photons/Hz−−−√ and a bandwidth of 40 MHz. We measure the thermal occupation of the modes of a highly attenuated coaxial cable in a range of 0.001 to 0.4 thermal photons, corresponding to a temperature range from 35 mK to 210 mK at a frequency around 5 GHz. To increase the radiation temperature in a controlled fashion, we either inject calibrated, wideband digital noise, or heat the device and its environment. This thermometry scheme can find applications in benchmarking and characterization of cryogenic microwave setups, temperature measurements in hybrid quantum systems, and quantum thermodynamics.
The parity of the number of elementary excitations present in a quantum system provides important insights into its physical properties. Parity measurements are used, for example, totomographically reconstruct quantum states or to determine if a decay of an excitation has occurred, information which can be used for quantum error correction in computation or communication protocols. Here we demonstrate a versatile parity detector for propagating microwaves, which distinguishes between radiation fields containing an even or odd number n of photons, both in a single-shot measurement and without perturbing the parity of the detected field. We showcase applications of the detector for direct Wigner tomography of propagating microwaves and heralded generation of Schrödinger cat states. This parity detection scheme is applicable over a broad frequency range and may prove useful, for example, for heralded or fault-tolerant quantum communication protocols.
The realization of quantum error correction is an essential ingredient for reaching the full potential of fault-tolerant universal quantum computation. Using a range of different schemes,logical qubits can be redundantly encoded in a set of physical qubits. One such scalable approach is based on the surface code. Here we experimentally implement its smallest viable instance, capable of repeatedly detecting any single error using seven superconducting qubits, four data qubits and three ancilla qubits. Using high-fidelity ancilla-based stabilizer measurements we initialize the cardinal states of the encoded logical qubit with an average logical fidelity of 96.1%. We then repeatedly check for errors using the stabilizer readout and observe that the logical quantum state is preserved with a lifetime and coherence time longer than those of any of the constituent qubits when no errors are detected. Our demonstration of error detection with its resulting enhancement of the conditioned logical qubit coherence times in a 7-qubit surface code is an important step indicating a promising route towards the realization of quantum error correction in the surface code.
Fault tolerant quantum computing relies on the ability to detect and correct errors, which in quantum error correction codes is typically achieved by projectively measuring multi-qubitparity operators and by conditioning operations on the observed error syndromes. Here, we experimentally demonstrate the use of an ancillary qubit to repeatedly measure the ZZ and XX parity operators of two data qubits and to thereby project their joint state into the respective parity subspaces. By applying feedback operations conditioned on the outcomes of individual parity measurements, we demonstrate the real-time stabilization of a Bell state with a fidelity of F≈74% in up to 12 cycles of the feedback loop. We also perform the protocol using Pauli frame updating and, in contrast to the case of real-time stabilization, observe a steady decrease in fidelity from cycle to cycle. The ability to stabilize parity over multiple feedback rounds with no reduction in fidelity provides strong evidence for the feasibility of executing stabilizer codes on timescales much longer than the intrinsic coherence times of the constituent qubits.
Heralding techniques are useful in quantum communication to circumvent losses without resorting to error correction schemes or quantum repeaters. Such techniques are realized, for example,by monitoring for photon loss at the receiving end of the quantum link while not disturbing the transmitted quantum state. We describe and experimentally benchmark a scheme that incorporates error detection in a quantum channel connecting two transmon qubits using traveling microwave photons. This is achieved by encoding the quantum information as a time-bin superposition of a single photon, which simultaneously realizes high communication rates and high fidelities. The presented scheme is straightforward to implement in circuit QED and is fully microwave-controlled, making it an interesting candidate for future modular quantum computing architectures.
A robust cryogenic infrastructure in form of a wired, thermally optimized dilution refrigerator is essential for present and future solid-state based quantum processors. Here, we engineeran extensible cryogenic setup, which minimizes passive and active heat loads, while guaranteeing rapid qubit control and readout. We review design criteria for qubit drive lines, flux lines, and output lines used in typical experiments with superconducting circuits and describe each type of line in detail. The passive heat load of stainless steel and NbTi coaxial cables and the active load due to signal dissipation are measured, validating our robust and extensible concept for thermal anchoring of attenuators, cables, and other microwave components. Our results are important for managing the heat budget of future large-scale quantum computers based on superconducting circuits.
The duration and fidelity of qubit readout is a critical factor for applications in quantum information processing as it limits the fidelity of algorithms which reuse qubits after measurementor apply feedback based on the measurement result. Here we present fast multiplexed readout of five qubits in a single 1.2 GHz wide readout channel. Using a readout pulse length of 80 ns and populating readout resonators for less than 250 ns we find an average correct assignment probability for the five measured qubits to be 97%. The differences between the individual readout errors and those found when measuring the qubits simultaneously are within 1%. We employ individual Purcell filters for each readout resonator to suppress off-resonant driving, which we characterize by the dephasing imposed on unintentionally measured qubits. We expect the here presented readout scheme to become particularly useful for the selective readout of individual qubits in multi-qubit quantum processors.
Active qubit reset is a key operation in many quantum algorithms, and particularly in error correction codes. Here, we experimentally demonstrate a reset scheme of a three level transmonartificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state with 0.2% residual excitation in less than 500ns. Our protocol is of practical interest as it has no requirements on the architecture, beyond those for fast and efficient single-shot readout of the transmon, and does not require feedback.
Sharing information coherently between nodes of a quantum network is at the foundation of distributed quantum information processing. In this scheme, the computation is divided intosubroutines and performed on several smaller quantum registers connected by classical and quantum channels. A direct quantum channel, which connects nodes deterministically, rather than probabilistically, is advantageous for fault-tolerant quantum computation because it reduces the threshold requirements and can achieve larger entanglement rates. Here, we implement deterministic state transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits constitute a universal quantum node capable of sending, receiving, storing, and processing quantum information. Our implementation is based on an all-microwave cavity-assisted Raman process which entangles or transfers the qubit state of a transmon-type artificial atom to a time-symmetric itinerant single photon. We transfer qubit states at a rate of 50kHz using the emitted photons which are absorbed at the receiving node with a probability of 98.1±0.1% achieving a transfer process fidelity of 80.02±0.07%. We also prepare on demand remote entanglement with a fidelity as high as 78.9±0.1%. Our results are in excellent agreement with numerical simulations based on a master equation description of the system. This deterministic quantum protocol has the potential to be used as a backbone of surface code quantum error correction across different nodes of a cryogenic network to realize large-scale fault-tolerant quantum computation in the circuit quantum electrodynamic architecture.