I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
24
Jan
2022
Operating in a deep underground facility improves the locking of gradiometric fluxonium qubits at the sweet spots
We demonstrate flux-bias locking and operation of a gradiometric fluxonium artificial atom using two symmetric granular aluminum (grAl) loops to implement the superinductor. The gradiometric
fluxonium shows two orders of magnitude suppression of sensitivity to homogeneous magnetic fields, which can be an asset for hybrid quantum systems requiring strong magnetic field biasing. By cooling down the device in an external magnetic field while crossing the metal-to-superconductor transition, the gradiometric fluxonium can be locked either at 0 or Φ0/2 effective flux bias, corresponding to an even or odd number of trapped fluxons, respectively. At mK temperatures, the fluxon parity prepared during initialization survives to magnetic field bias exceeding 100Φ0. However, even for states biased in the vicinity of 1Φ0, we observe unexpectedly short fluxon lifetimes of a few hours, which cannot be explained by thermal or quantum phase slips. When operating in a deep-underground cryostat of the Gran Sasso laboratory, the fluxon lifetimes increase to days, indicating that ionizing events activate phase slips in the grAl superinductor.
23
Jan
2022
Scalable High-Performance Fluxonium Quantum Processor
The technological development of hardware heading toward universal fault-tolerant quantum computation requires a large-scale processing unit with high performance. While fluxonium qubits
are promising with high coherence and large anharmonicity, their scalability has not been systematically explored. In this work, we propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk, reduced design complexity, improved operational efficiency, high-fidelity gates, and resistance to parameter fluctuations. In this architecture, the qubits are readout dispersively using individual resonators connected to a common bus and manipulated via combined on-chip RF and DC control lines, both of which can be designed to have low crosstalk. A multi-path coupling approach enables exchange interactions between the high-coherence computational states and at the same time suppresses the spurious static ZZ rate, leading to fast and high-fidelity entangling gates. We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz. Our study on frequency crowding indicates high fabrication yield for quantum processors consisting of over thousands of qubits. In addition, we estimate low resource overhead to suppress logical error rate using the XZZX surface code. These results promise a scalable quantum architecture with high performance for the pursuit of universal quantum computation.
21
Jan
2022
Short-Range Microwave Networks to Scale Superconducting Quantum Computation
A core challenge for superconducting quantum computers is to scale up the number of qubits in each processor without increasing noise or cross-talk. Distributing a quantum computer
across nearby small qubit arrays, known as chiplets, could solve many problems associated with size. We propose a chiplet architecture over microwave links with potential to exceed monolithic performance on near-term hardware. We model and evaluate the chiplet architecture in a way that bridges the physical and network layers. We find concrete evidence that distributed quantum computing may accelerate the path toward useful and ultimately scalable quantum computers. In the long-term, short-range networks may underlie quantum computers just as local area networks underlie classical datacenters and supercomputers today.
19
Jan
2022
Dissipation by surface states in superconducting RF cavities
Recent experiments on superconducting cavities have found that under large radio-frequency (RF) electromagnetic fields the quality factor can improve with increasing field amplitude,
a so-called „anti-Q slope.“ Linear theories of dissipation break down under these extreme conditions and are unable to explain this behavior. We numerically solve the Bogoliubov-de Gennes equations at the surface of a superconductor in a parallel AC magnetic field, finding that at large fields there are quasiparticle surface states with energies below the bulk value of the superconducting gap. As the field oscillates, such states emerge and disappear with every cycle. We consider the dissipation resulting from inelastic quasiparticle-phonon scattering into these states and investigate the ability of this mechanism to explain features of the experimental observations, including the field dependence of the quality factor. We find that this mechanism is likely not the dominant source of dissipation and does not produce an anti-Q slope by itself; however, we demonstrate in a modified two-fluid model how these bound states can play a role in producing an anti-Q slope.
17
Jan
2022
Ternary Metal Oxide Substrates for Superconducting Circuits
Substrate material imperfections and surface losses are one of the major factors limiting superconducting quantum circuitry from reaching the scale and complexity required to build
a practicable quantum computer. One potential path towards higher coherence of superconducting quantum devices is to explore new substrate materials with a reduced density of imperfections due to inherently different surface chemistries. Here, we examine two ternary metal oxide materials, spinel (MgAl2O4) and lanthanum aluminate (LaAlO3), with a focus on surface and interface characterization and preparation. Devices fabricated on LaAlO3 have quality factors three times higher than earlier devices, which we attribute to a reduction in interfacial disorder. MgAl2O4 is a new material in the realm of superconducting quantum devices and, even in the presence of significant surface disorder, consistently outperforms LaAlO3. Our results highlight the importance of materials exploration, substrate preparation, and characterization to identify materials suitable for high-performance superconducting quantum circuitry.
Phase-resolved visualization of radio-frequency standing waves in superconducting spiral resonator for metamaterial applications
Superconducting microcircuits and metamaterials are promising candidates for use in new generation cryogenic electronics. Their functionality is largely justified by the macroscopic
distribution of electromagnetic fields in arranged unit cells, rather than by the microscopic properties of composite materials. We present a new method for visualizing the spatial structure of penetrating microwaves with microscopic resolution in planar superconducting macroscopic resonators as the most important circuit-forming elements of modern microelectronics. This method uses a low-temperature laser scanning microscope that examines the phase (i.e., direction) and amplitude of local radio-frequency currents versus the two-dimensional coordinates of the superconducting resonant structure under test. Phase-sensitive contrast is achieved by synchronizing the intensity-modulated laser radiation with the resonant harmonics of the microwave signal passing through the sample. In this case, the laser-beam-induced loss in the illuminated area will strongly depend on the local phase difference between the RF carrier signal and the spatially temporal structure of the focused laser oscillation. This approach eliminates the hardware limitations of the existing technique of radio-frequency microscopy and brings the phase-sensitive demodulation mode to the level necessary for studying the physics of superconducting metamaterials. The advantage of the presented method over the previous method of RF laser scanning microscopy is demonstrated by the example of the formation of standing waves in a spiral superconducting Archimedean resonator up to the 38th eigenmode resonance.
16
Jan
2022
Shortcuts to Adiabaticity for Fast Qubit Readout in Circuit Quantum Electrodynamics
We propose how to engineer the longitudinal coupling to accelerate the measurement of a qubit longitudinally coupled to a cavity, motivated by the concept of shortcuts to adiabaticity.
Different modulations are inversely designed from two methods of inverse engineering and counter-diabatic driving, for achieving larger values of the signal-to-noise ratio (SNR) at nanosecond scale. By comparison, we demonstrate that our protocols outperform the usual periodic modulations on the pointer state separation and SNR. Finally, we show a possible implementation considering state-of-the-art circuit quantum electrodynamics architecture, estimating the minimal time allowed for the measurement process.
13
Jan
2022
Fundamental limits of superconducting quantum computers
The Continuous Spontaneous Localization (CSL) model is an alternative formulation of quantum mechanics which introduces a noise coupled non linearly to the wave function to account
for its collapse. We consider CSL effects on quantum computers made of superconducting transmon qubits. As a direct effect CSL reduces quantum superpositions of the computational basis states of the qubits: we show the reduction rate to be negligibly small. However, an indirect effect of CSL, dissipation induced by the noise, also leads transmon qubits to decohere, by generating additional quasiparticles. Since the decoherence rate of transmon qubits depends on the quasiparticle density, by computing their generation rate induced by CSL, we can estimate the corresponding quasiparticle density and thus the limit set by CSL on the performances of transmon quantum computers. We show that CSL could spoil the quantum computation of practical algorithms on large devices. We further explore the possibility of testing CSL effects on superconducting devices.
12
Jan
2022
Self phase-matched broadband amplification with a left-handed Josephson transmission line
Josephson Traveling Wave Parametric Amplifiers (J-TWPAs) are promising platforms for realizing broadband quantum-limited amplification of microwave signals. However, substantial gain
in such systems is attainable only when strict constraints on phase matching of the signal, idler and pump waves are satisfied — this is rendered particularly challenging in the presence of nonlinear effects, such as self- and cross-phase modulation, which scale with the intensity of propagating signals. In this work, we present a simple J-TWPA design based on `left-handed‘ (negative-index) nonlinear Josephson metamaterial, which realizes autonomous phase matching \emph{without} the need for any complicated circuit or dispersion engineering. The resultant efficiency of four-wave mixing process can implement gains in excess of 20 dB over few GHz bandwidths with much shorter lines than previous implementations. Furthermore, the autonomous nature of phase matching considerably simplifies the J-TWPA design than previous implementations based on `right-handed‘ (positive index) Josephson metamaterials, making the proposed architecture particularly appealing from a fabrication perspective. The left-handed JTL introduced here constitutes a new modality in distributed Josephson circuits, and forms a crucial piece of the unified framework that can be used to inform the optimal design and operation of broadband microwave amplifiers.
11
Jan
2022
Full-Wave Methodology to Compute the Spontaneous Emission Rate of a Transmon Qubit
The spontaneous emission rate (SER) is an important figure of merit for any quantum bit (qubit), as it can play a significant role in the control and decoherence of the qubit. As a
result, accurately characterizing the SER for practical devices is an important step in the design of quantum information processing devices. Here, we specifically focus on the experimentally popular platform of a transmon qubit, which is a kind of superconducting circuit qubit. Despite the importance of understanding the SER of these qubits, it is often determined using approximate circuit models or is inferred from measurements on a fabricated device. To improve the accuracy of predictions in the design process, it is better to use full-wave numerical methods that can make a minimal number of approximations in the description of practical systems. In this work, we show how this can be done with a recently developed field-based description of transmon qubits coupled to an electromagnetic environment. We validate our model by computing the SER for devices similar to those found in the literature that have been well-characterized experimentally. We further cross-validate our results by comparing them to simplified lumped element circuit and transmission line models as appropriate.