I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
21
Dez
2022
Realization of a quantum neural network using repeat-until-success circuits in a superconducting quantum processor
Artificial neural networks are becoming an integral part of digital solutions to complex problems. However, employing neural networks on quantum processors faces challenges related
to the implementation of non-linear functions using quantum circuits. In this paper, we use repeat-until-success circuits enabled by real-time control-flow feedback to realize quantum neurons with non-linear activation functions. These neurons constitute elementary building blocks that can be arranged in a variety of layouts to carry out deep learning tasks quantum coherently. As an example, we construct a minimal feedforward quantum neural network capable of learning all 2-to-1-bit Boolean functions by optimization of network activation parameters within the supervised-learning paradigm. This model is shown to perform non-linear classification and effectively learns from multiple copies of a single training state consisting of the maximal superposition of all inputs.
Error-detectable bosonic entangling gates with a noisy ancilla
Bosonic quantum error correction has proven to be a successful approach for extending the coherence of quantum memories, but to execute deep quantum circuits, high-fidelity gates between
encoded qubits are needed. To that end, we present a family of error-detectable two-qubit gates for a variety of bosonic encodings. From a new geometric framework based on a „Bloch sphere“ of bosonic operators, we construct ZZL(θ) and eSWAP(θ) gates for the binomial, 4-legged cat, dual-rail and several other bosonic codes. The gate Hamiltonian is simple to engineer, requiring only a programmable beamsplitter between two bosonic qubits and an ancilla dispersively coupled to one qubit. This Hamiltonian can be realized in circuit QED hardware with ancilla transmons and microwave cavities. The proposed theoretical framework was developed for circuit QED but is generalizable to any platform that can effectively generate this Hamiltonian. Crucially, one can also detect first-order errors in the ancilla and the bosonic qubits during the gates. We show that this allows one to reach error-detected gate fidelities at the 10−4 level with today’s hardware, limited only by second-order hardware errors.
16
Dez
2022
Wideband Josephson Parametric Isolator
The cryogenic hardware needed to build a superconducting qubit based quantum computer requires a variety of microwave components including microwave couplers, filters, amplifiers, and
circulators/isolators. Traditionally, these are implemented via discrete components inserted in to the signal path. As qubit counts climb over the 100+ mark, the integration of these peripheral components, in an effort to reduce overall footprint, thermal load, and added noise in the overall system, is a key challenge to scaling. Ferrite-based microwave isolators are one of the physically largest devices that continue to remain as discrete components. They are generally employed in the readout chain to protect qubits and resonators from broadband noise and unwanted signals emanating from downstream components such as amplifiers. Here we present an alternative two-port isolating integrated circuit derived from the DC Superconducting Quantum Interference Device (DC-SQUID). The non-reciprocal transmission is achieved using the three-wave microwave mixing properties of a flux-modulated DC-SQUID. We show experimentally that, when multiple DC-SQUIDs are embedded in a multi-pole admittance inverting filter structure, RF flux pumping of the DC-SQUIDs can provide directional microwave power flow. For a three-pole filter device, we experimentally demonstrate a directionality greater than 15 dB over a 600 MHz bandwidth.
14
Dez
2022
Photon-Pressure with a Negative Mass Microwave Mode
Harmonic oscillators belong to the most fundamental concepts in physics and are central to many current research fields such as circuit QED, cavity optomechanics and photon-pressure
systems. Here, we engineer an effective negative mass harmonic oscillator mode in a superconducting microwave LC circuit and couple it via photon-pressure to a second low-frequency circuit. We demonstrate that the effective negative mass leads to an inversion of dynamical backaction and to sideband-cooling of the low-frequency circuit by a blue-detuned pump field, naturally explained by the inverted energy ladder of the negative mass oscillator.
Fast parametric two-qubit gate for highly detuned fixed-frequency superconducting qubits using a double-transmon coupler
High-performance two-qubit gates have been reported with superconducting qubits coupled via a single-transmon coupler (STC). Most of them are implemented for qubits with a small detuning
since reducing residual ZZ coupling for highly detuned qubits by an STC is challenging. In terms of the frequency crowding and crosstalk, however, highly detuned qubits are desirable. Here, we numerically demonstrate a high-performance parametric gate for highly detuned fixed-frequency qubits using a recently proposed tunable coupler called a double-transmon coupler (DTC). Applying an ac flux pulse, we can perform a maximally entangling universal gate (iSWAP‾‾‾‾‾‾‾√) with an average fidelity over 99.99% and a short gate time of about 24 ns. This speed is comparable to resonance-based gates for slightly detuned tunable qubits. Moreover, using a dc flux pulse alternatively, we can achieve another kind of entangling gate called a CZ gate with an average fidelity over 99.99% and a gate time of about 18 ns. Given the frexibility and feasible settings, we can expect that the DTC will contribute to realizing a high-performance quantum computer in the near future.
13
Dez
2022
Improving Josephson junction reproducibility for superconducting quantum circuits: shadow evaporation and oxidation
The most commonly used physical realization of superconducting qubits for quantum circuits is a transmon. There are a number of superconducting quantum circuits applications, where
Josephson junction critical current reproducibility over a chip is crucial. Here, we report on a robust chip scale Al/AlOx/Al junctions fabrication method due to comprehensive study of shadow evaporation and oxidation steps. We experimentally demonstrate the evidence of optimal Josephson junction electrodes thickness, deposition rate and deposition angle, which ensure minimal electrode surface and line edge roughness. The influence of oxidation method, pressure and time on critical current reproducibility is determined. With the proposed method we demonstrate Al/AlOx/Al junction fabrication with the critical current variation (σ/Ic) less than 3.9% (from 150×200 to 150×600 nm2 area) and 7.7% (for 100×100 nm2 area) over 20×20 mm2 chip. Finally, we fabricate separately three 5×10 mm2 chips with 18 transmon qubits (near 4.3 GHz frequency) showing less than 1.9% frequency variation between qubit on different chips. The proposed approach and optimization criteria can be utilized for a robust wafer-scale superconducting qubit circuits fabrication.
Soliton versus single photon quantum dynamics in arrays of superconducting qubits
Superconducting circuits constitute a promising platform for future implementation of quantum processors and simulators. Arrays of capacitively coupled transmon qubits naturally implement
the Bose-Hubbard model with attractive on-site interaction. The spectrum of such many-body systems is characterised by low-energy localised states defining the lattice analog of bright solitons. Here, we demonstrate that these bright solitons can be pinned in the system, and we find that a soliton moves while maintaining its shape. Its velocity obeys a scaling law in terms of the combined interaction and number of constituent bosons. In contrast, the source-to-drain transport of photons through the array occurs through extended states that have higher energy compared to the bright soliton. For weak coupling between the source/drain and the array, the populations of the source and drain oscillate in time, with the chain remaining nearly unpopulated at all times. Such a phenomenon is found to be parity dependent. Implications of our results for the actual experimental realisations are discussed.
12
Dez
2022
Architectures for Multinode Superconducting Quantum Computers
Many proposals to scale quantum technology rely on modular or distributed designs where individual quantum processors, called nodes, are linked together to form one large multinode
quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, a limiting factor of these machines will be internode gates, which may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require a range of techniques, including improvements in entanglement generation, the use of entanglement distillation, and optimized software and compilers, and it remains unclear how improvements to these components interact to affect overall system performance, what performance from each is required, or even how to quantify the performance of each. In this paper, we employ a `co-design‘ inspired approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. In the case of superconducting MNQCs with microwave-to-optical links, we uncover a tradeoff between entanglement generation and distillation that threatens to degrade performance. We show how to navigate this tradeoff, lay out how compilers should optimize between local and internode gates, and discuss when noisy quantum links have an advantage over purely classical links. Using these results, we introduce a roadmap for the realization of early MNQCs which illustrates potential improvements to the hardware and software of MNQCs and outlines criteria for evaluating the landscape, from progress in entanglement generation and quantum memory to dedicated algorithms such as distributed quantum phase estimation. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.
Resolving non-perturbative renormalization of a microwave-dressed weakly anharmonic superconducting qubit
Microwave driving is a ubiquitous technique for superconducting qubits (SCQs), but the dressed states description based on the conventionally used perturbation theory and rotating wave
approximation cannot fully capture the dynamics in the strong driving limit. Comprehensive experimental works beyond these approximations applicable for transmons is unfortunately rare, which receive rising interests in quantum technologies. In this work, we investigate a microwave-dressed transmon over a wide range of driving parameters. We find significant renormalization of Rabi frequencies, energy relaxation times, and the coupling rates with a readout resonator, all of which are not quantified without breaking the conventional approximations. We also establish a concise non-Floquet theory beyond the two-state model while dramatically minimizing the approximations, which excellently quantifies the experiments. This work expands our fundamental understanding of time-periodically driven systems and will have an important role in accurately estimating the dynamics of weakly anharmonic qubits. Furthermore, our non-Floquet approach is beneficial for theoretical analysis since one can avoid additional efforts such as the choice of proper Floquet modes, which is more complicated for multi-level systems.
09
Dez
2022
Dynamically enhancing qubit-oscillator interactions with anti-squeezing
The interaction strength of an oscillator to a qubit grows with the oscillator’s vacuum field fluctuations. The well known degenerate parametric oscillator has revived interest
in the regime of strongly detuned squeezing, where its eigenstates are squeezed Fock states. Owing to these amplified field fluctuations, it was recently proposed that squeezing this oscillator would dynamically boost its coupling to a qubit. In a superconducting circuit experiment, we observe a two-fold increase in the dispersive interaction between a qubit and an oscillator at 5.5 dB of squeezing, demonstrating in-situ dynamical control of qubit-oscillator interactions. This work initiates the experimental coupling of oscillators of squeezed photons to qubits, and cautiously motivates their dissemination in experimental platforms seeking enhanced interactions.