I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
01
Mä
2024
Niobium coaxial cavities with internal quality factors exceeding 1.5 billion for circuit quantum electrodynamics
Group-V materials such as niobium and tantalum have become popular choices for extending the performance of circuit quantum electrodynamics (cQED) platforms allowing for quantum processors
and memories with reduced error rates and more modes. The complex surface chemistry of niobium however makes identifying the main modes of decoherence difficult at millikelvin temperatures and single-photon powers. We use niobium coaxial quarter-wave cavities to study the impact of etch chemistry, prolonged atmospheric exposure, and the significance of cavity conditions prior to and during cooldown, in particular niobium hydride evolution, on single-photon coherence. We demonstrate cavities with quality factors of Qint≳1.4×109 in the single-photon regime, a 15 fold improvement over aluminum cavities of the same geometry. We rigorously quantify the sensitivity of our fabrication process to various loss mechanisms and demonstrate a 2−4× reduction in the two-level system (TLS) loss tangent and a 3−5× improvement in the residual resistivity over traditional BCP etching techniques. Finally, we demonstrate transmon integration and coherent cavity control while maintaining a cavity coherence of \SI{11.3}{ms}. The accessibility of our method, which can easily be replicated in academic-lab settings, and the demonstration of its performance mark an advancement in 3D cQED.
29
Feb
2024
Tunable compact on-chip superconducting switch
We develop a compact four-port superconducting switch with a tunable operating frequency in the range of 4.8 GHz — 7.3 GHz. Isolation between channel exceeds 20~dB over a bandwidth
of several hundred megahertz, exceeding 40 dB at some frequencies. The footprint of the device is 80×420 μm. The tunability requires only a global flux bias without either permanent magnets or micro-electromechanical structures. As the switch is superconducting, the heat dissipation during operation is negligible. The device can operate at up to -80~dBm, which is equal to 2.5×106 photons at 6 GHz per microsecond. The device show a possibility to be operated as a beamsplitter with tunable splitting ratio.
Simple, High Saturation Power, Quantum-limited, RF SQUID Array-based Josephson Parametric Amplifiers
High-fidelity quantum non-demolition qubit measurement is critical to error correction and rapid qubit feedback in large-scale quantum computing. High-fidelity readout requires passing
a short and strong pulse through the qubit’s readout resonator, which is then processed by a sufficiently high bandwidth, high saturation power, and quantum-limited amplifier. We have developed a design pipeline that combines time-domain simulation of the un-truncated device Hamiltonian, fabrication constraints, and maximization of saturation power. We have realized an amplifier based on a modified NIST tri-layer Nb fabrication suite which utilizes an array of 25 radio frequency Superconducting QUantum Interference Devices (rf SQUIDs) embedded within a low-Q resonator powered by a high-power voltage pump delivered via a diplexer on the signal port. We show that, despite the intensity of the pump, the device is quantum-efficient and capable of high-fidelity measurement limited by state transitions in the transmon. We present experimental data demonstrating up to -91.2 dBm input saturation power with 20 dB gain, up to 28 MHz instantaneous bandwidth, and phase-preserving qubit measurements with 62% quantum efficiency.
Realization of High-Fidelity CZ Gate based on a Double-Transmon Coupler
Striving for higher gate fidelity is crucial not only for enhancing existing noisy intermediate-scale quantum (NISQ) devices but also for unleashing the potential of fault-tolerant
quantum computation through quantum error correction. A recently proposed theoretical scheme, the double-transmon coupler (DTC), aims to achieve both suppressed residual interaction and a fast high-fidelity two-qubit gate simultaneously, particularly for highly detuned qubits. Harnessing the state-of-the-art fabrication techniques and a model-free pulse-optimization process based on reinforcement learning, we translate the theoretical DTC scheme into reality, attaining fidelities of 99.92% for a CZ gate and 99.98% for single-qubit gates. The performance of the DTC scheme demonstrates its potential as a competitive building block for superconducting quantum processors.
Magnetic-field dependence of a Josephson traveling-wave parametric amplifier and integration into a high-field setup
We investigate the effect of magnetic field on a photonic-crystal Josephson traveling-wave parametric amplifier (TWPA). We show that the observed change in photonic bandgap and plasma
frequency of the TWPA can be modeled by considering the suppression of the critical current in the Josephson junctions (JJs) of the TWPA due to the Fraunhofer effect and closing of the superconducting gap. Accounting for the JJ geometry is crucial for understanding the field dependence. In one in-plane direction, the TWPA bandgap can be shifted by 2 GHz using up to 60 mT of field, without losing gain or bandwidth, showing that TWPAs without SQUIDs can be field tunable. In the other in-plane direction, the magnetic field is perpendicular to the larger side of the Josephson junctions, so the Fraunhofer effect has a smaller period. This larger side of the JJs is modulated to create the bandgap. The field interacts more strongly with the larger junctions, and as a result, the TWPA bandgap closes and reopens as the field increases, causing the TWPA to become severely compromised already at 2 mT. A slightly higher operating limit of 5 mT is found in out-of-plane field, for which the TWPA’s response is hysteretic. These measurements reveal the requirements for magnetic shielding needed to use TWPAs in experiments where high fields at the sample are required; we show that with magnetic shields we can operate the TWPA while applying over 2 T to the sample.
28
Feb
2024
Gate Operations for Superconducting Qubits and Non-Markovianity: Fidelities, Long-range Time Correlations, and Suppression of Decoherence
While the accuracy of qubit operations has been greatly improved in the last decade, further development is demanded to achieve the ultimate goal: a fault-tolerant quantum computer
that can solve real-world problems more efficiently than classical computers. With growing fidelities even subtle effects of environmental noise such as qubit-reservoir correlations and non-Markovian dynamics turn into the focus for both circuit design and control. To guide progress, we disclose, in a numerically rigorous manner, a comprehensive picture of the single-qubit dynamics in presence of a broad class of noise sources and for entire sequences of gate operations. Thermal reservoirs ranging from Ohmic to deep 1/fε-like sub-Ohmic behavior are considered to imitate realistic scenarios for superconducting qubits. Apart from dynamical features, two figures of merit are analyzed, namely, fidelities of the qubit performance over entire sequences and coherence times in presence of quantum control schemes such as the Hahn echo and dynamical decoupling. The relevance of retarded feedback and long-range qubit-reservoir correlations is demonstrated on a quantitative level, thus, providing a deeper understanding of the limitations of performances for current devices and guiding the design of future ones.
Hybrid optomechanical superconducting qubit system
We propose an integrated nonlinear superconducting device based on a nanoelectromechanical shuttle. The system can be described as a qubit coupled to a bosonic mode. The topology of
the circuit gives rise to an adjustable qubit/mechanical coupling, allowing the experimenter to tune between linear and quadratic coupling in the mechanical degrees of freedom. Owing to its flexibility and potential scalability, the proposed setup represents an important step towards the implementation of bosonic error correction with mechanical elements in large-scale superconducting circuits. We give preliminary evidence of this possibility by discussing a simple state-swapping protocol that uses this device as a quantum memory element.
Impact of etches on thin-film single-crystal niobium resonators
A single crystal niobium thin film was grown using molecular beam epitaxy on a c-plane sapphire wafer. Several samples were fabricated into dc resistivity test devices and coplanar
waveguide resonator chips using the same microfabrication procedures and solvent cleans. The samples were then subject to different acid cleaning treatments using different combinations of piranha, hydrofluoric acid, and buffered oxide etch solutions. The different samples expressed changes in dc resistivity in the normal and superconducting states such that the low temperature resistivities changed by more than 100\%, and the residual resistivity ratio dropped by a factor of 2. The internal quality factor of coplanar waveguide resonators measured near 5~GHz also showed significant variation at single photon powers ranging from 1.4×106 to less than 60×103. These changes correlate with the formation of surface crystallites that appear to be hydrocarbons. All observations are consistent with hydrogen diffusing into the niobium film at levels below the saturation threshold that is needed to observe niobium hydrides.
27
Feb
2024
Scaling quantum computing with dynamic circuits
Quantum computers process information with the laws of quantum mechanics. Current quantum hardware is noisy, can only store information for a short time, and is limited to a few quantum
bits, i.e., qubits, typically arranged in a planar connectivity. However, many applications of quantum computing require more connectivity than the planar lattice offered by the hardware on more qubits than is available on a single quantum processing unit (QPU). Here we overcome these limitations with error mitigated dynamic circuits and circuit-cutting to create quantum states requiring a periodic connectivity employing up to 142 qubits spanning multiple QPUs connected in real-time with a classical link. In a dynamic circuit, quantum gates can be classically controlled by the outcomes of mid-circuit measurements within run-time, i.e., within a fraction of the coherence time of the qubits. Our real-time classical link allows us to apply a quantum gate on one QPU conditioned on the outcome of a measurement on another QPU which enables a modular scaling of quantum hardware. Furthermore, the error mitigated control-flow enhances qubit connectivity and the instruction set of the hardware thus increasing the versatility of our quantum computers. Dynamic circuits and quantum modularity are thus key to scale quantum computers and make them useful.
Reducing leakage of single-qubit gates for superconducting quantum processors using analytical control pulse envelopes
Improving the speed and fidelity of quantum logic gates is essential to reach quantum advantage with future quantum computers. However, fast logic gates lead to increased leakage errors
in superconducting quantum processors based on qubits with low anharmonicity, such as transmons. To reduce leakage errors, we propose and experimentally demonstrate two new analytical methods, Fourier ansatz spectrum tuning derivative removal by adiabatic gate (FAST DRAG) and higher-derivative (HD) DRAG, both of which enable shaping single-qubit control pulses in the frequency domain to achieve stronger suppression of leakage transitions compared to previously demonstrated pulse shapes. Using the new methods to suppress the ef-transition of a transmon qubit with an anharmonicity of -212 MHz, we implement RX(π/2)-gates with a leakage error below 3.0×10−5 down to a gate duration of 6.25 ns, which corresponds to a 20-fold reduction in leakage compared to a conventional Cosine DRAG pulse. Employing the FAST DRAG method, we further achieve an error per gate of (1.56±0.07)×10−4 at a 7.9-ns gate duration, outperforming conventional pulse shapes both in terms of error and gate speed. Furthermore, we study error-amplifying measurements for the characterization of temporal microwave control pulse distortions, and demonstrate that non-Markovian coherent errors caused by such distortions may be a significant source of error for sub-10-ns single-qubit gates unless corrected using predistortion.