Schrieffer-Wolff transformation for non-Hermitian systems: application for -symmetric circuit QED

  1. Grigory A. Starkov,
  2. Mikhail V. Fistul,
  3. and Ilya M. Eremin
Combining non-hermiticity and interactions yields novel effects in open quantum many-body systems. Here, we develop the generalized Schrieffer-Wolff transformation and derive the effective Hamiltonian suitable for various quasi-degenerate \textit{non-Hermitian} systems. We apply our results to an exemplary –symmetric circuit QED composed of two non-Hermitian qubits embedded in a lossless resonator. We consider a resonant quantum circuit as |ωr−Ω|≪ωr, where Ω and ωr are qubits and resonator frequencies, respectively, providing well-defined groups of quasi-degenerate resonant states. For such a system, using direct numerical diagonalization we obtain the dependence of the low-lying eigenspectrum on the interaction strength between a single qubit and the resonator, g, and the gain (loss) parameter γ, and compare that with the eigenvalues obtained analytically using the effective Hamiltonian of resonant states. We identify –symmetry broken and unbroken phases, trace the formation of Exceptional Points of the second and the third order, and provide a complete phase diagram g−γ of low-lying resonant states. We relate the formation of Exceptional Points to the additional -pseudo-Hermitian symmetry of the system and show that non-hermiticity mixes the „dark“ and the „bright“ states, which has a direct experimental consequence.

leave comment