Engineering nonequilibrium steady states through Floquet Liouvillians

  1. Weijian Chen,
  2. Maryam Abbasi,
  3. Serra Erdamar,
  4. Jacob Muldoon,
  5. Yogesh N. Joglekar,
  6. and Kater W. Murch
We experimentally study the transient dynamics of a dissipative superconducting qubit under periodic drive towards its nonequilibrium steady states. The corresponding stroboscopic evolution,
given by the qubit states at times equal to integer multiples of the drive period, is determined by a (generically non-Hermitian) Floquet Liouvillian. The drive period controls both the transients across its non-Hermitian degeneracies and the resulting nonequilibrium steady states. These steady states can exhibit higher purity compared to those achieved with a constant drive. We further study the dependence of the steady states on the direction of parameter variation and relate these findings to the recent studies of dynamically encircling exceptional points. Our work provides a new approach to control non-Hermiticity in dissipative quantum systems and presents a new paradigm in quantum state preparation and stabilization.

Entanglement assisted probe of the non-Markovian to Markovian transition in open quantum system dynamics

  1. Chandrashekhar Gaikwad,
  2. Daria Kowsari,
  3. Carson Brame,
  4. Xingrui Song,
  5. Haimeng Zhang,
  6. Martina Esposito,
  7. Arpit Ranadive,
  8. Giulio Cappelli,
  9. Nicolas Roch,
  10. Eli M. Levenson-Falk,
  11. and Kater W. Murch
We utilize a superconducting qubit processor to experimentally probe the transition from non-Markovian to Markovian dynamics of an entangled qubit pair. We prepare an entangled state
between two qubits and monitor the evolution of entanglement over time as one of the qubits interacts with a small quantum environment consisting of an auxiliary transmon qubit coupled to its readout cavity. We observe the collapse and revival of the entanglement as a signature of quantum memory effects in the environment. We then engineer the non-Markovianity of the environment by populating its readout cavity with thermal photons to show a transition from non-Markovian to Markovian dynamics, reaching a regime where the quantum Zeno effect creates a decoherence-free subspace that effectively stabilizes the entanglement between the qubits.

Constraining work fluctuations of non-Hermitian dynamics across the exceptional point of a superconducting qubit

  1. Serra Erdamar,
  2. Maryam Abbasi,
  3. Byung Ha,
  4. Weijian Chen,
  5. Jacob Muldoon,
  6. Yogesh Joglekar,
  7. and Kater W. Murch
Thermodynamics constrains changes to the energy of a system, both deliberate and random, via its first and second laws. When the system is not in equilibrium, fluctuation theorems such
as the Jarzynski equality further restrict the distributions of deliberate work done. Such fluctuation theorems have been experimentally verified in small, non-equilibrium quantum systems undergoing unitary or decohering dynamics. Yet, their validity in systems governed by a non-Hermitian Hamiltonian has long been contentious, due to the false premise of the Hamiltonian’s dual and equivalent roles in dynamics and energetics. Here we show that work fluctuations in a non-Hermitian qubit obey the Jarzynski equality even if its Hamiltonian has complex or purely imaginary eigenvalues. With post-selection on a dissipative superconducting circuit undergoing a cyclic parameter sweep, we experimentally quantify the work distribution using projective energy measurements and show that the fate of the Jarzynski equality is determined by the parity-time symmetry of, and the energetics that result from, the corresponding non-Hermitian, Floquet Hamiltonian. By distinguishing the energetics from non-Hermitian dynamics, our results provide the recipe for investigating the non-equilibrium quantum thermodynamics of such open systems.

Observing Parity Time Symmetry Breaking in a Josephson Parametric Amplifier

  1. Chandrashekhar Gaikwad,
  2. Daria Kowsari,
  3. Weijian Chen,
  4. and Kater W. Murch
A coupled two-mode system with balanced gain and loss is a paradigmatic example of an open quantum system that can exhibit real spectra despite being described by a non-Hermitian Hamiltonian.
We utilize a degenerate parametric amplifier operating in three-wave mixing mode to realize such a system of balanced gain and loss between the two quadrature modes of the amplifier. By examining the time-domain response of the amplifier, we observe a characteristic transition from real-to-imaginary energy eigenvalues associated with the Parity-Time-symmetry-breaking transition.

Energetic cost of measurements using quantum, coherent, and thermal light

  1. Xiayu Linpeng,
  2. Léa Bresque,
  3. Maria Maffei,
  4. Andrew N. Jordan,
  5. 4 Alexia Auffèves,
  6. and Kater W. Murch
Quantum measurements are basic operations that play a critical role in the study and application of quantum information. We study how the use of quantum, coherent, and classical thermal
states of light in a circuit quantum electrodynamics setup impacts the performance of quantum measurements, by comparing their respective measurement backaction and measurement signal to noise ratio per photon. In the strong dispersive limit, we find that thermal light is capable of performing quantum measurements with comparable efficiency to coherent light, both being outperformed by single-photon light. We then analyze the thermodynamic cost of each measurement scheme. We show that single-photon light shows an advantage in terms of energy cost per information gain, reaching the fundamental thermodynamic cost.

Decoherence Induced Exceptional Points in a Dissipative Superconducting Qubit

  1. Weijian Chen,
  2. Maryam Abbasi,
  3. Byung Ha,
  4. Serra Erdamar,
  5. Yogesh N. Joglekar,
  6. and Kater W. Murch
Open quantum systems interacting with an environment exhibit dynamics described by the combination of dissipation and coherent Hamiltonian evolution. Taken together, these effects are
captured by a Liouvillian superoperator. The degeneracies of the (generically non-Hermitian) Liouvillian are exceptional points, which are associated with critical dynamics as the system approaches steady state. We use a superconducting transmon circuit coupled to an engineered environment to observe two different types of Liouvillian exceptional points that arise either from the interplay of energy loss and decoherence or purely due to decoherence. By dynamically tuning the Liouvillian superoperators in real time we observe a non-Hermiticity-induced chiral state transfer. Our study motivates a new look at open quantum system dynamics from the vantage of Liouvillian exceptional points, enabling applications of non-Hermitian dynamics in the understanding and control of open quantum systems.

Electron on solid neon — a new solid-state single-electron qubit platform

  1. Xianjing Zhou,
  2. Gerwin Koolstra,
  3. Xufeng Zhang,
  4. Ge Yang,
  5. Xu Han,
  6. Brennan Dizdar,
  7. Divan Ralu,
  8. Wei Guo,
  9. Kater W. Murch,
  10. David I. Schuster,
  11. and Dafei Jin
The promise of quantum computing has driven a persistent quest for new qubit platforms with long coherence, fast operation, and large scalability. Electrons, ubiquitous elementary particles
of nonzero charge, spin, and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits via either motional or spin states depends critically on their material environment. Here we report our experimental realization of a new qubit platform based upon isolated single electrons trapped on an ultraclean solid neon surface in vacuum. By integrating an electron trap in a circuit quantum electrodynamics architecture, we achieve strong coupling between the motional states of a single electron and microwave photons in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are used to measure the energy relaxation time T1 of 15 μs and phase coherence time T2 over 200 ns, indicating that the electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.

Weak Measurement of Superconducting Qubit Reconciles Incompatible Operators

  1. Jonathan T. Monroe,
  2. Nicole Yunger Halpern,
  3. Taeho Lee,
  4. and Kater W. Murch
Traditional uncertainty relations dictate a minimal amount of noise in incompatible projective quantum measurements. However, not all measurements are projective. Weak measurements
are minimally invasive methods for obtaining partial state information without projection. Recently, weak measurements were shown to obey an uncertainty relation cast in terms of entropies. We experimentally test this entropic uncertainty relation with strong and weak measurements of a superconducting transmon qubit. A weak measurement, we find, can reconcile two strong measurements‘ incompatibility, via backaction on the state. Mathematically, a weak value—a preselected and postselected expectation value—lowers the uncertainty bound. Hence we provide experimental support for the physical interpretation of the weak value as a determinant of a weak measurement’s ability to reconcile incompatible operations.