I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
27
Aug
2024
Comprehensive explanation of ZZ coupling in superconducting qubits
A major challenge for scaling up superconducting quantum computers is unwanted couplings between qubits, which lead to always-on ZZ couplings that impact gate fidelities by shifting
energy levels conditional on qubit states. To tackle this challenge, we introduce analytical and numerical techniques, including a diagrammatic perturbation theory and a state-assignment algorithm, as well as a refined intuitive picture for the workings of the ZZ coupling. Together, these tools enable a deeper understanding of the mechanisms behind the ZZ coupling and facilitate finding parameter regions of weak and strong ZZ coupling. We showcase these techniques for a system consisting of two fixed-frequency transmon qubits connected by a flux-tunable transmon coupler. There, we find three types of parameter regions with zero or near-zero ZZ coupling, all of which are accessible with current technology. We furthermore find regions of strong ZZ coupling nearby, which may be used to implement adiabatic controlled-phase gates. Our methods are applicable to many types of qubits and open up for the design of large-scale quantum computers with improved gate fidelities.
26
Aug
2024
Dynamic compensation for pump-induced frequency shift in Kerr-cat qubit initialization
The noise-biased Kerr-cat qubit is an attractive candidate for fault-tolerant quantum computation; however, its initialization faces challenges due to the squeezing pump-induced frequency
shift (PIFS). Here, we propose and demonstrate a dynamic compensation method to mitigate the effect of PIFS during the Kerr-cat qubit initialization. Utilizing a novel nonlinearity-engineered triple-loop SQUID device, we realize a stabilized Kerr-cat qubit and validate the advantages of the dynamic compensation method by improving the initialization fidelity from 57% to 78%, with a projected fidelity of 91% after excluding state preparation and measurement errors. Our results not only advance the practical implementation of Kerr-cat qubits, but also provide valuable insights into the fundamental adiabatic dynamics of these systems. This work paves the way for scalable quantum processors that leverage the bias-preserving properties of Kerr-cat qubits.
24
Aug
2024
Robust optimal control for a systematic error in the control amplitude of transmon qubits
In the era of Noisy Intermediate-Scale Quantum computing as well as in error correcting circuits, physical qubits coherence time and high fidelity gates are essential to the functioning
of quantum computers. In this paper, we demonstrate theoretically and experimentally, that pulses designed by optimization can be used to counteract the loss of fidelity due to a control amplitude error of the transmon qubit. We analyze the control landscape obtained by robust optimal control and find it to depend on the error range, namely the solutions can get trapped in the basin of attraction of sub-optimal solutions. Robust controls are found for different error values and are compared to an incoherent loss of fidelity mechanism due to a finite relaxation rate. The controls are tested on the IBMQ’s qubit and found to demonstrate resilience against significant ∼10% errors.
23
Aug
2024
Eliminating Surface Oxides of Superconducting Circuits with Noble Metal Encapsulation
The lifetime of superconducting qubits is limited by dielectric loss, and a major source of dielectric loss is the native oxide present at the surface of the superconducting metal.
Specifically, tantalum-based superconducting qubits have been demonstrated with record lifetimes, but a major source of loss is the presence of two-level systems (TLSs) in the surface tantalum oxide. Here, we demonstrate a strategy for avoiding oxide formation by encapsulating the tantalum with noble metals that do not form native oxide. By depositing a few nanometers of Au or AuPd alloy before breaking vacuum, we completely suppress tantalum oxide formation. Microwave loss measurements of superconducting resonators reveal that the noble metal is proximitized, with a superconducting gap over 80% of the bare tantalum at thicknesses where the oxide is fully suppressed. We find that losses in resonators fabricated by subtractive etching are dominated by oxides on the sidewalls, suggesting total surface encapsulation by additive fabrication as a promising strategy for eliminating surface oxide TLS loss in superconducting qubits.
22
Aug
2024
A General Framework for Gradient-Based Optimization of Superconducting Quantum Circuits using Qubit Discovery as a Case Study
Engineering the Hamiltonian of a quantum system is fundamental to the design of quantum systems. Automating Hamiltonian design through gradient-based optimization can dramatically accelerate
this process. However, computing the gradients of eigenvalues and eigenvectors of a Hamiltonian–a large, sparse matrix–relative to system properties poses a significant challenge, especially for arbitrary systems. Superconducting quantum circuits offer substantial flexibility in Hamiltonian design, making them an ideal platform for this task. In this work, we present a comprehensive framework for the gradient-based optimization of superconducting quantum circuits, leveraging the SQcircuit software package. By addressing the challenge of calculating the gradient of the eigensystem for large, sparse Hamiltonians and integrating automatic differentiation within SQcircuit, our framework enables efficient and precise computation of gradients for various circuit properties or custom-defined metrics, streamlining the optimization process. We apply this framework to the qubit discovery problem, demonstrating its effectiveness in identifying qubit designs with superior performance metrics. The optimized circuits show improvements in a heuristic measure of gate count, upper bounds on gate speed, decoherence time, and resilience to noise and fabrication errors compared to existing qubits. While this methodology is showcased through qubit optimization and discovery, it is versatile and can be extended to tackle other optimization challenges in superconducting quantum hardware design.
21
Aug
2024
In situ mixer calibration for superconducting quantum circuits
Mixers play a crucial role in superconducting quantum computing, primarily by facilitating frequency conversion of signals to enable precise control and readout of quantum states. However,
imperfections, particularly carrier leakage and unwanted sideband signal, can significantly compromise control fidelity. To mitigate these defects, regular and precise mixer calibrations are indispensable, yet they pose a formidable challenge in large-scale quantum control. Here, we introduce an in situ calibration technique and outcome-focused mixer calibration scheme using superconducting qubits. Our method leverages the qubit’s response to imperfect signals, allowing for calibration without modifying the wiring configuration. We experimentally validate the efficacy of this technique by benchmarking single-qubit gate fidelity and qubit coherence time.
M2CS: A Microwave Measurement and Control System for Large-scale Superconducting Quantum Processors
As superconducting quantum computing continues to advance at an unprecedented pace, there is a compelling demand for the innovation of specialized electronic instruments that act as
crucial conduits between quantum processors and host computers. Here, we introduce a Microwave Measurement and Control System (M2CS) dedicated for large-scale superconducting quantum processors. M2CS features a compact modular design that balances overall performance, scalability, and flexibility. Electronic tests of M2CS show key metrics comparable to commercial instruments. Benchmark tests on transmon superconducting qubits further show qubit coherence and gate fidelities comparable to state-of-the-art results, confirming M2CS’s capability to meet the stringent requirements of quantum experiments run on intermediate-scale quantum processors. The system’s compact and scalable design offers significant room for further enhancements that could accommodate the measurement and control requirements of over 1000 qubits, and can also be adopted to other quantum computing platforms such as trapped ions and silicon quantum dots. The M2CS architecture may also be applied to wider range of scenarios, such as microwave kinetic inductance detectors, as well as phased array radar systems.
14
Aug
2024
Initial Correlations and Time-Retarded Noise in Dynamical Decoupling Schemes for Superconducting Qubits
One of the simplest and least resource-intensive methods to suppress decoherence for superconducting qubit operations, namely, dynamical decoupling (DD), is investigated for a broadrange of realistic noise sources with time-retarded feedback. By way of example, the Carr-Purcell-Meiboom-Gill (CPMG) sequence is analyzed in a numerically rigorous manner accounting also for correlations between qubit and environment. Since experimentally noise sources are characterized through spectral densities, we adopt the spin-boson model as a suitable platform to describe the qubit dynamics under DD for a given spectral density J(ω)∝ωs. To cover a broad range of noise sources, the spectral exponent s is varied from s=1 (Ohmic bath) to a substantially small value 0
12
Aug
2024
Lumped-element two-section impedance-matched SNAIL parametric amplifier
Broadband impedance-matched Josephson parametric amplifiers are key components for high-fidelity single-shot multi-qubit readout. Nowadays, several types of impedance matched parametric
amplifiers have been proposed: the first is an impedance-matched parametric amplifier based on a Klopfenstein taper, and the second is an impedance-matched parametric amplifier based on auxiliary resonators. Here, we present the quantum-limited 3-wave-mixing lumped-element SNAIL parametric amplifier with two-units impedance matching transformer. A two-pole Chebyshev matching network with shunted resonators based on parallel-plate capacitors and superconducting planar coil. Operating in a flux-pumped mode, we experimentally demonstrate an average gain of 15dB across a 600MHz bandwidth, along with an average saturation power of −107dBm and quantum-limited noise temperature.
09
Aug
2024
Optimizing Pulse Shapes of an Echoed Conditional Displacement Gate in a Superconducting Bosonic System
Echoed conditional displacement (ECD) gates for bosonic systems have become the key element for real-time quantum error correction beyond the break-even point. These gates are characterized
by a single complex parameter β, and can be constructed using Gaussian pulses and free evolutions with the help of an ancillary transmon qubit. We show that there is a lower bound for the gate time in the standard construction of an ECD gate. We present a method for optimizing the pulse shape of an ECD gate using a pulse-shaping technique subject to a set of experimental constraints. Our optimized pulse shapes remain symmetric, and can be applied to a range of target values of β by tuning only the amplitude. We demonstrate that the total gate time of an ECD gate for a small value of β can be reduced either by relaxing the no-overlap constraint on the primitives used in the standard construction or via our optimal-control method. We show a slight advantage of the optimal-control method by demonstrating a reduction in the preparation time of a |+ZGKP> logical state by ∼10%.