I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
13
Mä
2021
Enhanced-coherence all-nitride superconducting qubit epitaxially grown on Si Substrate
We have developed superconducting qubits based on NbN/AlN/NbN epitaxial Josephson junctions on Si substrates which promise to overcome the drawbacks of qubits based on Al/AlOx/Al junctions.
The all-nitride qubits have great advantages such as chemical stability against oxidation (resulting in fewer two-level fluctuators), feasibility for epitaxial tunnel barriers (further reducing energy relaxation and dephasing), and a larger superconducting gap of ∼5.2 meV for NbN compared to ∼0.3 meV for Al (suppressing the excitation of quasiparticles). Replacing conventional MgO by a Si substrate with a TiN buffer layer for epitaxial growth of nitride junctions, we demonstrate a qubit energy relaxation time T1=16.3 μs and a spin-echo dephasing time T2=21.5 μs. These significant improvements in quantum coherence are explained by the reduced dielectric loss compared to previously reported NbN-based qubits with MgO substrates (T1≈T2≈0.5 μs). These results are an important step towards constructing a new platform for superconducting quantum hardware.
Low-noise on-chip coherent microwave source
The increasing need for scaling up quantum computers operating in the microwave domain calls for advanced approaches for control electronics. To this end, integration of components
at cryogenic temperatures hosting also the quantum devices seems tempting. However, this comes with the limitations of ultra-low power dissipation accompanied by stringent signal-quality requirements to implement quantum-coherent operations. Here, we present a device and a technique to provide coherent continuous-wave microwave emission. We experimentally verify that its operation characteristics accurately follow our introduced theory based on a perturbative treatment of the capacitively shunted Josephson junction as a gain element. From phase noise measurements, we evaluate that the infidelity of typical quantum gate operations owing to this cryogenic source is less than 0.1% up to 10-ms evolution times, which is well below the infidelity caused by dephasing of the state-of-the-art superconducting qubits. Our device provides a coherent tone of 25 pW, corresponding to the total power needed in simultaneous control of thousands of qubits. Thus, together with future cryogenic amplitude and phase modulation techniques, our results may open pathways for scalable cryogenic control systems for quantum processors.
12
Mä
2021
Floating tunable coupler for scalable quantum computing architectures
We propose a floating tunable coupler that does not rely on direct qubit-qubit coupling capacitances to achieve the zero-coupling condition. We show that the polarity of the qubit-coupler
couplings can be engineered to offset the otherwise constant qubit-qubit coupling and attain the zero-coupling condition when the coupler frequency is above or below the qubit frequencies. We experimentally demonstrate these two operating regimes of the tunable coupler by implementing symmetric and asymmetric configurations of the coupler’s superconducting pads with respect to the qubits. Such a floating tunable coupler provides flexibility in designing large-scale quantum processors while reducing the always-on residual couplings.
11
Mä
2021
A Josephson junction supercurrent diode
Transport is called nonreciprocal when not only the sign, but also the absolute value of the current, depends on the polarity of the applied voltage. It requires simultaneously broken
inversion and time-reversal symmetries, e.g., by the interplay of spin-orbit coupling and magnetic field. So far, observation of nonreciprocity was always tied to resistivity, and dissipationless nonreciprocal circuit elements were elusive. Here, we engineer fully superconducting nonreciprocal devices based on highly-transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link nonreciprocal supercurrent to the asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient for the first time. A semi-quantitative model well explains the main features of our experimental data. Nonreciprocal Josephson junctions have the potential to become for superconducting circuits what pn-junctions are for traditional electronics, opening the way to novel nondissipative circuit elements.
08
Mä
2021
Phonon-number resolution of voltage-biased mechanical oscillators with weakly-anharmonic superconducting circuits
Observing quantum phenomena in macroscopic objects, and the potential discovery of a fundamental limit in the applicability of quantum mechanics, has been a central topic of modern
experimental physics. Highly coherent and heavy micro-mechanical oscillators controlled by superconducting circuits are a promising system for this task. Here, we focus in particular on the electrostatic coupling of motion to a weakly anharmonic circuit, namely the transmon qubit. In the case of a megahertz mechanical oscillator coupled to a gigahertz transmon, we explain the difficulties in bridging the large electro-mechanical frequency gap. To remedy this issue, we explore the requirements to reach phonon-number resolution in the resonant coupling of a megahertz transmon and a mechanical oscillator.
Arbitrary controlled-phase gate on fluxonium qubits using differential ac-Stark shifts
Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting
qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to non-computational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ-interaction due to unequal ac-Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ-term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.
06
Mä
2021
Experimental quantum teleportation of propagating microwaves
The modern field of quantum communication thrives on promise to deliver efficient and unconditionally secure ways to exchange information by exploiting quantum laws of physics. Here,
quantum teleportation stands out as an exemplary protocol allowing for the disembodied and safe transfer of unknown quantum states using quantum entanglement and classical communication as resources. The experimental feasibility of quantum teleportation with propagating waves, relevant to communication scenarios, has been demonstrated in various physical settings. However, an analogous implementation of quantum teleportation in the microwave domain was missing so far. At the same time, recent breakthroughs in quantum computation with superconducting circuits have triggered a demand for quantum communication between spatially separated superconducting processors operated at microwave frequencies. Here, we demonstrate a realization of deterministic quantum teleportation of coherent microwave states by exploiting two-mode squeezing and analog feedforward over macroscopic distances d=42cm. We achieve teleportation fidelities F=0.689±0.004 exceeding the no-cloning Fnc=2/3 threshold for coherent states with an average photon number of up to nd=1.1. Our results provide a key ingredient for the teleportation-based quantum gate for modular quantum computing with superconducting circuits and establish a solid foundation for future microwave quantum local area networks.
05
Mä
2021
Circuit quantization with time-dependent magnetic fields for realistic geometries
Quantum circuit theory has become a powerful and indispensable tool to predict the dynamics of superconducting circuits. Surprisingly however, the question of how to properly account
for a time-dependent driving via external magnetic fields has hardly been addressed so far. Here, we derive a general recipe to construct a low-energy Hamiltonian, taking as input only the circuit geometry and the solution of the external magnetic fields. A gauge fixing procedure for the scalar and vector potentials is given which assures that time-varying magnetic fluxes make contributions only to the potential function in the Schrödinger equation. Our proposed procedure is valid for continuum geometries and thus significantly generalizes previous efforts, which were based on discrete circuits. We study some implications of our results for the concrete example of a parallel-plate SQUID circuit. We show that if we insist on representing the response of this SQUID with individual, discrete capacitances associated with each individual Josephson junction, this is only possible if we permit the individual capacitance values to be negative, time-dependent or even momentarily singular. Finally, we provide some experimentally testable predictions, such as a strong enhancement of the qubit relaxation rates arising from the effective negative capacitances, and the emergence of a Berry phase due to time dependence of these capacitances.
Investigating microwave loss of SiGe using superconducting transmon qubits
Silicon-Germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to eletro-optical modulators and quantum dots. The diverse properties of SiGe
also make it attractive to implementations involving superconducting quantum computing. Here we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state of the art performance of superconducting quantum circuits.
04
Mä
2021
Characterizing mid-circuit measurements on a superconducting qubit using gate set tomography
Measurements that occur within the internal layers of a quantum circuit — mid-circuit measurements — are an important quantum computing primitive, most notably for quantum
error correction. Mid-circuit measurements have both classical and quantum outputs, so they can be subject to error modes that do not exist for measurements that terminate quantum circuits. Here we show how to characterize mid-circuit measurements, modelled by quantum instruments, using a technique that we call quantum instrument linear gate set tomography (QILGST). We then apply this technique to characterize a dispersive measurement on a superconducting transmon qubit within a multiqubit system. By varying the delay time between the measurement pulse and subsequent gates, we explore the impact of residual cavity photon population on measurement error. QILGST can resolve different error modes and quantify the total error from a measurement; in our experiment, for delay times above 1000 ns we measured a total error rate (i.e., half diamond distance) of ϵ⋄=8.1±1.4%, a readout fidelity of 97.0±0.3%, and output quantum state fidelities of 96.7±0.6% and 93.7±0.7% when measuring 0 and 1, respectively.